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Chaotic Motion of Test Particles in the Ernst 
Space-time 
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Trajectories of test particles in the Ernst space-time are studied. The 
Poincar~ surfaces of section are constructed and Lyapunov characteristic 
exponents are evaluated for a selected set of trajectories. This approach 
indicates that  the number of isolating integrals is not sufficient to sepa- 
rate equations of motion and the particle trajectories are not integrable. 

1.INTRODUCTION 

The Ernst metric [1] is a static, axially symmetric, electro-vacuum solution 
of the Einstein-Maxwell equations with a black hole immersed in a mag- 
netic field. Two parameters describe the solution: mass parameter M, and 
magnetic field parameter B0. Setting B0 = 0, M # 0, the Ernst metric 
reduces to the Schwarzschild metric, while with B0 # 0, M = 0 we obtain 
Melvin's magnetic universe. The Ernst solution has been generalized to a 
class of magnetized Kerr-Newman solutions [2] and its possible astrophys- 
ical applications have been discussed by several authors [3,4]. Complete 
understanding of the space-time structure, however, has not been achieved 
even in the simplest case of the static solution, probably for two main rea- 
sons: (i) The Ernst solution is not asymptotically flat, and (ii) the geodesic 
equation has not been successfully separated and solved as yet. Several 
authors studied special cases of the test particle motion [5-12]. Equatorial 
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orbits and their perturbations were discussed in detail but very little is 
known about non-equatorial trajectories. 

In this paper, we s tudy test motion of both electrically charged and 
neutral particles. In particular, we address the problem of the existence or 
non-existence of an additional constant of motion (analogous to Carter 's  
constant in the Kerr space-time). Our approach is mainly numerical and 
we basically follow the well-known paper by Hdnon and tteiles [13], who 
studied the chaotic motion in a configuration with the same number of 
degrees of freedom as in our case (2), but with a different form of the 
potential. We also evaluate Lyapunov characteristic exponents (LCZ) of 
a set of trajectories with various energies and initial conditions. Several 
issues in the conception of LcE within the framework of general relativity 
are discussed. 

With some minor restrictions (given by the applicability of the nu- 
merical method) we conclude that  no additional constant of motion exists 
and the equation of the tes t  particle motion cannot thus be separated in 
general. Such a negative conclusion can be expected because equations of 
motion are integrable in very special cases only. However, we believe that  
the result is of interest at least for two reasons: (i) magnetized black holes 
are perhaps the simplest exact solutions generalizing ordinary black hole 
spacetimes with no singularities outside the horizon, and (ii) the method 
of LCE and related techniques was found very powerful in variety of situ- 
ations where a quantitative definition of stochasticity of orbits is needed. 
On the other hand, it has not been frequently used within the area of 
general relativity. 

2. T R A J E C T O R I E S  OF T E S T  PARTICLES 

The metric of the Ernst solution in Schwarzschild-like coordinates 
with geometrical units is 

ds 2 = A 2 dt 2 - - ~ d r  2 - r2dO 2 - A-2r  2 sin 2 08r  2, (1) 

where A = r 2 -- 2 M r  and A = 1 + � 8 8  2 sin 2 0. The electromagnetic field 
four-potential has a non-zero component 

A r  = - � 8 9  2 sin 2 O. (2) 

The equation of motion of a test particle with rest mass m and electric 
charge q is given by 

D U U  q u v 
- F~ U , Fuu - Av , .  - Au,u. (3) 

dv m 
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In the hamiltonian formalism, eq. (3) can be derived from 

d z~ 07/ d 07t 
~l-~ - O ~r a ' d--~ rr ~ = O x ~ , (4) 

where v is an affine parameter along the trajectory (which can be chosen 
identical to the proper time) and 

7/--- �89 (Tr~ - qA~) (Tqs - qAz) . (5) 

Evidently, three constants of motion can be found: the rest mass m 
of the particle, energy ,~ _ Pt, and projection of the generalized angular 
momentum onto the symmetry axis s _ PC § qAr The phase space 
of a particle moving under no constraints is 8-dimensional. Considering 
constants t~ and s the motion with respect to t and r coordinates is 
separated and the number of degrees of freedom is reduced to 2. In the 
(r, 0)-plane the trajectory is bounded to a region which is determined by 
the condition ~: _> V(r, O) with the effective potential 

[ ( h ( L + q A r  (6) V(r,O) = A2Ar -2 m 2-}- rs--~n0 

Boundaries of the region of allowed motion [E = V(r, 0)] for several values 
of energy are shown in Fig. 1. Interestingly, a suitable choice of the para- 
meters describing the metric (M, B0) and the particle (m, q, E, /:) gives 
two separated regions near the equatorial plane 0 = ~r/2. Both regions 
join together for s > ~crit, as shown in the figure. 

To find trajectories analytically (in the form analogous to, e.g., 
Carter's equations in the Kerr metric) another independent constant of 
motion is required. If' such a constant existed, eq. (3) could be decoupled 
and separated. In the well-known case of the Kerr space-time the existence 
of Carter's constant is associated with the Killing-Yano tensor. However, 
the Ernst space-time is of the Petrov type I [14] in contrast to the type 
D of the Kerr metric, and therefore the existence of a non-trivial Killing- 
Yano tensor is excluded [15]. Unfortunately, there is no general, analytical 
method to find all constants of motion (except for those associated with 
evident symmetries of the metric) or at least to prove or disprove their 
existence [16]. 

Another approach to the problem, which is based on the numerical 
treatment,  employs the methods of the Poincard surfaces of section and 
LCE [13,16]. 
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Fig. 1. The typical shape of the boundaries of allowed motion in the (z, p)-plane; 
z : rcos0, p -- rsln0. In this figure, BoM -- 0.15, q/rn = 7.1, E/m = -87.09, and 
the curves are plotted for energy in the region 115 < s  < 134 (the cusp occurs for 
g /m  = 128.456). 

3. SURFACES OF SECTION 

In the first method we choose a surface in the phase space (0 = Ir/2, 
say) and plot cross sections of the t rajectory in the graph with another 
two coordinates on the abscissa and ordinate, respectively (e.g. r and § 
There  are basically no restrictions on the choice of the surface of section 
except one - - i t  must  not coincide with the hyper-surface of a constant of 
motion (also called the isolating integral). If  the additional integral exists, 
the t ra jectory is bound to a hyper-surface in the phase space; this hyper- 
surface crosses the surface of section in a curve. In other words, crossings 
of the t ra jectory with a surface of section form a curve in the graph. For 
example,  in the case of the Schwarzschild background metric [B0 = 0 in (1)] 
this additional constant is obviously associated with the other components 
of the particle 's  angular momen tum due to the spherical symmet ry  and we 



Test Par t ic les  in the  Erns t  Space- t ime 733 

x 

i 

~ ~ f r  

! 

rmin 
.__E~.G_E___D__ 

Fig. 2a 

. Veff 

f E~.G_E__D__ 
rmax 

Fig. 2b 



734 K a r a s  a n d  V o k r o u h l i c k ~  

. .  

2s~,.-,,~r 2,. ".~,'. .'~'; .".:- ~ii:" :',?.,-- oi~ii~\-.,~, .. ,., :.',r :..,~...~ :., ..~",':." :. 
. ,  . . .  ,.: . . . . . . .  , . . . , '-.~.,..,.: ,,...; :,.:. 

, , : .  . . . . .  . , .  

" : . t  TM �9 ".: ,32. ' ; .  ~".:: ".~.,..'. 

t , ,  l 

rrnln rmax 
Fig.  2c 

Fig.  2. The surfaces of section for electrically neutral  particles with B o M  = 0.15, 
C / m  = 25 and  different values of specific energy s  (a) 5.01, (b) 5.1, and (c) 5.39687. 
Surfaces of section show typically stronger chaotic behaviour when the energy exceeds 
some value: In (a) the cross-sections corresponding to different initial conditions are 
fairly sharp and form separated curves, while in (c) they are distributed randomly 
through the allowable area. In this last case, a cusp in the "r curve forms at the inner 
radius r~=. This corresponds to a critical, self-crossing equipotential surface with a 
Lagrangian point; if material fills this surface, the cusp will transfer mass to the black 
hole. (For details see the text.) 

obta in  

where 

V(~oc ) = 1 - ~  m 2 + ~  , (7) 

12 = s + (P0,(0))2. 

(Note  tha t  we prefer to  use the radial  velocity measured  by the local s tat ic  
observers located at the  posit ion of  the  particle, V~loc), instead of § An- 

other  l imiting case of  (1) corresponds to  the cylindrically symmetr ic  Melvin 
space- t ime [M = 0 in (1)] which is endowed with the  addit ional  Killing 
vector field Oz, z = r cos 8. The  integrabil i ty is now ensured analogously to 
the Schwarzschild case. However, one cannot  follow the same concept ion 
as with eq. (7) because the mot ion  in the  z-direction is unbounded .  
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On the other hand, if no additional constant of motion exists, we 
observe a fuzzy structure in the graph and the motion is called chaotic. 

Figures 2 and 3 show several typical examples of surfaces of section 
in the case of electrically neutral and electrically charged particles, respec- 
tively. Cross sections of a trajectory in the phase space with the 0 = 7r/2 
plane are plotted in the (r, v r0oc))-graph. The curve of the effective po- 
tential which bounds the cross sections in the graphs is marked Vefr and 
also plotted for given values of g and Z:. In the case of electrically neu- 
tral particles this curve has topology of a circle; allowable area is then 
rrnin .<_ r/M < rmax and -Vm~x < v~loc ) _< Vm~x. As in Fig. 1, in the 
case of charged particles two separated regions may occur; in that  case we 
restrict ourselves to one of the regions (the other region can be studied 
analogously). The graphs are constructed for several values of energy. In 
general, trajectories appear less chaotic when the energy is not too high; in 
that  case, the set of points corresponding to a given trajectory covers only 
a small part of the allowable area (in the terminology of Ref. 13)---some 
points even seem to lie on a curve. 'Stochastic' trajectories appear sepa- 
rated by regular ones since two degrees of freedom of the problem do not 
allow the Arnold diffusion [16]. On the other hand, higher energy yields 
stochastic trajectories which fill a large portion of the allowable area and 
regular trajectories cannot be found. 

4. LYAPUNOV CHARACTERISTIC EXPONENTS 

The method of LCV, provides us with a more quantitative description of 
the system with chaotic features. Although the method is again based on 
numerical evaluations and thus some critical remarks on its applicability 
must be accepted, it is closer to the rigorous prove of chaoticity (and thus 
non-integrability) than the previous approach. Roughly speaking, it is 
based on computing the mean rate of divergence of a bundle of orbits. A 
deep survey of the theory of Lyapunov exponents and their key role in 
the concept of stochasticity is given in [16,18,19]; numerical algorithms 
and recipes for their estimate can be found there as well. The following 
paragraph contains a very brief exposition of the formalism based mainly 
on [18]. 

4.1 B r i e f  r ev iew of  t h e  t h e o r y  
Within the framework of classical mechanics, the phase space of a dynam- 
ical system with n degrees of freedom is represented by a 2n-dimensional 
manifold Ad (we assume f14 compact). Let us denote by Ct a flow which is 
a solution of the Hamilton equations. LCE are quasi-local quantities char- 
acterizing a curve ,7 induced by ~t with given initial conditions at t = 0, 
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Fig.  3. The same as in Fig. 2, but  for electrically charged particles with s  = 
-87.09, q/m = 7.1 and  E/m: (a) 11.14, (b) 11.235, (c) 11.284, and (d) 11.334. 
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x E .&4. Let y(s)  be a curve connecting y(0) = x with another points on 
nearby curves of the flow. Let us denote by Tz2r tangent space at x, 

Oy 
w = - -  E Tx.A4, 

(g s I~=o 

and by d( ,  ) the distance on 2~4 induced by the metric. Thus, 

d(y(s) ,  x) -- sllwll § o(s). 

Analogously for (I)-transported quantities 

D ~ t  w c9(~tY 
- ~gs I ,=0 E T r  

d((~ty(s), r = sllD(I,t~wll + o(s), 

where D~ t : T x M  --* T v , x M  is the linear mapping. Finally, the Lya- 
punov characteristic exponent relative to x and w is defined by 

1 In d( (~ ty ( s ) ' r  

s--~0 

]]DOtw[[ 
= l i m  (S)  

, - .oo  IIwll 

A non-zero LCE corresponds to trajectories diverging exponentially, as can 
be seen from (8). For the given flow curve 7/the value of 7(x, w) is actually 
independent of x because we consider the limit t -* co. In the case of 
periodic orbits one can introduce the basis {ei}, i = 1 , . . . ,  2n of Tv~zA4 
constructed from eigenvectors of D ~  and obtain 2n LCE 7(ei) each of 
which is connected with one of the basis vectors. It can be proved that  
exactly 2n different LCE describe non-periodic orbits as well. 

Several features of LCE will be important  in the following. First, re- 
stricting to a k-dimensional subspace in Tr and evaluating 7(w) for 
any w from this subspace one obtains just  the maximum LCE associated 
with basis vectors of the subspace, 7(ei) .  In other words, inserting an ar- 
bitrarily chosen vector w E T~.s in (8) one always obtains the maximum 
LCE (except for singular cases; for details refer to l~efs. 16,18). 

Next, for a Hamiltonian flow there is a symmetry in LCE which can 
be expressed in the form 7(ei)  = --7(e2n_i+l).  

The  key theorem on which our conclusions are based is due to Casati 
et al. [17] who proved that  every isolating integral of motion decreases 
the number of non-zero LeES by two. In particular, for integrable Hamilto- 
nian systems the rate of divergence of nearby trajectories is polynomial at 
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maximum (not exponential) everywhere in the phase space and thus all the 
LOE vanish. From this point of view the indication of a non-zero Lyapunov 
exponent excludes global integrability of the problem. One has to stress 
the adjective 'global' in the previous statement because LeE are purely 
quasi-local quantities. They  are associated with the given trajectory. 

For practical determination of the maximum LCE on a computer one 
cannot follow the definition (8) immediately. According to one of the 
widely used methods which we also have employed, one starts with two 
close trajectories and follows them (by solving equations of motion nu- 
merically) until the separation exceeds some pre-determined upper value. 
The separation of trajectories is then scaled down to its initial value and 
the equations of motion are solved further with new starting conditions. 
(Equivalently, a constant time interval between rescalings can be given.) 
Therefore, the trajectories remain close to each other. The maximum LeE 
is determined as a numerically estimated limit 

'~ ~/ di In 7 = lim . . - - ,  
n---,oo ~ do 

i=1 

with do and di lengths of separation vectors at initial time and at time ti 
of i-th rescaling. The last expression for 7 and the whole approach follows 
from the linearity of equations for deviations of infinitesimally close orbits. 

4.2 LCE f o r m u l a t e d  w i t h i n  t h e  3 + 1 a p p r o a c h  
Now we apply the approach of the previous paragraph to trajectories de- 
scribing motion of test particles in a curved space-time. We wish to main- 
tain an operationalist definition of LC~ as a description of the relative 
motion along initially close trajectories as seen by a physical observer. 
Such a description comes naturally within the framework of the 3 + 1 for- 
malism. Thus, we first choose a set of fiducial observers who measure 
space separations of the trajectories taking into account symmetries of the 
space-time. 

In particular, we consider the static solution (1) of the Einstein- 
Maxwell equations. One can introduce a set of preferred static observers 
and estimate LeE on basis of separations in the phase space as measured 
by these observers in space-like hyper-surfaces St of constant global time 
t. (For a description of 3 + 1 splitting of the space-time we use here see, 
e.g., Ref. 20.) It can be seen (e.g., Refs. 16,18) that  the value of LCE does 
not depend on metric in St. Naturally, it does depend on the choice of 
fiducial observers themselves and this choice is not unique, however, in a 
static space-time a reasonable definition of these observers is possible. 
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3-dimensional vectors are obtained by projecting 4-dimensional quan- 
tities into St with the projection tensor h~ = if~+U~Uv, where U s denotes 
the observer's four-velocity: ~i =h~xi ~, ~ri = h~r~,. For the 3-metric corre- 
sponding to the space-time element (1) ~ij = gij, gij = gij ( i , j  = 1 , . . . ,  3). 
(Let us mention that  in a non-relativistic limit with B0 = 0 and r ~ 
in (1) we obtain the standard definition of LCE.) Hamilton equations in 
3-quantities have their standard form 

with 

a d .  
= (9) 

7"[ - -  ' ] ' / (x i ,  ~'j;  71" t - '+ ~ ) .  (10) 

One can see that  (~i, ~j) are canonically conjugate variables in a 6-dimen- 
sional phase space AJ (s) with hamiltonian flow induced by 7~. 

Obviously, two integrals of motion are present: ~ = /~ (projection 
of the angular momentum) and 7t = m 2 (square of the rest mass of the 
particle). Due to these integrals four of the LCE are necessarily zero. It 
is only the remaining pair of them that  could be non-zero. If this is the 
case, the non-zero ice  must have opposite signs because the problem is 
represented by the Hamiltonian flow in the phase space. To conclude, there 
remains only one independent, possibly non-zero LC~. in our problem. This 
fact simplifies the required computations [16,18]. 

Figure 4 shows a numerically evaluated estimate of limiting values of 
LC~. for a selected set of trajectories starting in the equatorial plane with 
radial coordinate r; ~ is defined as 

def ,~ = lim ~ ( t ) =  lim I[D~txW[[s 
, oo Ilwlls ' 

where II [Is is the norm in the space part of Trfl4 (6). This limit is often 
non-zero, indicating non-zero 7 and thus chaotic motion. To reach the 
plateau of the R(t) curve in the chaotic region, the number of time steps 
required in integration of one trajectory was typically 106-107. It is a well- 
known fact, which has already been discussed in the classic paper [13], that  
there can occur nearly regular islands in the developed chaotic sea in the 
phase space. Such islands exist in our problem too; they are indicated by a 
decrease of R in Fig. 4. Particles moving along corresponding trajectories 
remain close each other and small values of ~ indicate that  LCE vanish. 
In the interval marked by arrows the divergence of orbits is much slower 
and the maximum value of the R in this region does not exceed 10 -8 (in 
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Fig.  4. Graphs (a) and (b) show terminal  values of ~ corresponding to the surfaces 
of section in Figs. 3 (b) and (d), respectively. Regions with chaotic trajectories are 
indicated by fuzzy structures in Fig. 3 and non-zero terminal  values of ~ in this figure. 
On the other  hand,  the arrows in Fig. 4a determine an  upper  est imate of A in the 
region where trajectories diverge very slowly and  appear  nearly regular compared to 
other  regions. Boundaries rmln, rmax are determined by the effective potent ia l  [eq. (6)]. 



742 Karas and Vokrouhlick~ 

convenient units), as opposed to ~ 10 -2 in chaotic regions. (Analogously, 
no divergence can be detected for trajectories corresponding to those in 
Fig. 2a.) Note that Fig. 3 displays sharp structures where regular orbits 
are detected by vanishing A. 

5. CONCLUSIONS 

5.1 Non- in tegrab i l i ty  of  t ra jec tor ies  
In this paper we have studied, numerically, orbits of test particles in the 
Ernst space-time, constructed the Poincar6 surfaces of section and esti- 
mated the value of LCE for a set of typical trajectories. Previous works on 
this subject have dealt mostly with orbits confined to the equatorial plane, 
because the equations of motion in a general case outside this plane have 
not been successfully separated and solved as yet. We conjecture that the 
separation is very probably impossible, because the motion of test particle 
appears to be chaotic. 

5.2 Warn ings  
The objections against both numerical methods we have used arise from 
a principal impossibility of tracing the particle trajectory throughout an 
infinite time span. On the contrary, both non-integrability arguments are 
based on performing an infinite number of operations--either crossings of 
the particular trajectory with the surface of section or time steps in the 
series of rescalings according to the computer code for evaluation of LCE 
[16]. Here are the usual reasons for opposing the numerical approaches 
which one often faces: 
1. One can always construct a curve joining all the crossings of the par- 

ticle trajectory in the phase space with the surface of section because 
there is only a finite number of them. 

2. The limit of a series is of course independent of a finite number of its 
terms, while within the framework of the numerical approach which 
we have employed only such a finite--though very large--number is 
evaluated. 

Bearing this in mind, we suggest the strong evidence of non-integrability 
of the problem discussed here. 
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