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The general form of the global conservation laws for N-body systems in the first post-Newtonian
approximation of general relativity is considered. Our approach applies to the motion of an isolated
system of N arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies
and uses a framework recently introduced by Damour, Soffel, and Xu (DSX). We succeed in showing
that seven of the first integrals of the system (total mass-energy, total dipole mass moment, and total
linear momentum) can be broken up into a sum of contributions which can be entirely expressed
in terms of the basic quantities entering the DSX framework: namely, the relativistic individual
multipole moments of the bodies, the relativistic tidal moments experienced by each body, and
the positions and orientations with respect to the global coordinate system of the local reference
frames attached to each body. On the other hand, the total angular momentum of the system does
not seem to be expressible in such a form due to the unavoidable presence of irreducible nonlinear
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gravitational effects.

PACS number(s): 04.25.Nx, 95.10.Ce

I. INTRODUCTION

Recently, Damour, Soffel, and Xu [1-4] (DSX) devel-
oped an exhaustive approach to the first post-Newtonian
dynamics of a system of NV extended bodies. This theory
is based on the complementary use of some local coor-
dinate systems (attached to each body) and of a global
coordinate system used to describe the orbital motion of
the N bodies. Detailed analyses of the laws of global
translational motion [2] and local rotational motion [3]
of the bodies have been given.

In this paper, we address the question of the global
conservation laws of an IN-body system and their link
to the quantities introduced in the DSX framework. We
use the word conservation laws to mean the first inte-
grals related to the total four momentum and angular
momentum of the system, and to the center-of-mass the-
orem. The existence, on the first post-Newtonian level,
of these ten integrals is guaranteed by the general form
of the field equations [5-10]. Our main problem con-
cerns the form of these conservation laws. More pre-
cisely, we investigate whether they can be entirely ex-
pressed in terms of the basic quantities introduced in the
DSX post-Newtonian theory: namely, the set of the rel-
ativistic individual mass and spin multipole moments of
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the N bodies (M#, Sf) and the set of the gravitoelectric
and gravitomagnetic tidal moments experienced by each
body (G4, H{'). (Here, as in Refs. [1-4], whose notation
we follow, A, B = 1,..., N labels the various bodies, and
L = iy---4; is a multispatial index.) The former fully
characterize the structure of the post-Newtonian gravi-
tational field generated by an extended body in its local
coordinate system, while the latter characterize the tidal
action of the other bodies in this local coordinate sys-
tem, including inertial contributions due to its accelera-
tion and rotation. Obviously, the positions and velocities,
with respect to the global coordinate system, of the ori-
gins of the local systems attached to each body, as well
as their orientations, need to be considered, and will also
enter the final expressions.

Let us start by discussing the various methods used
for deriving some explicit forms of the global conservation
laws in general relativity. First, let us remark that the ex-
pressions based on surface integrals at infinity [5,9,10] are
of no real use within the post-Newtonian context because
one loses a power 1/c? in reading out a conserved quan-
tity from the asymptotic behavior of the metric. Con-
cerning approaches where the conserved quantities are
given as three-dimensional integrals, we note the formu-
lation of Fock [6], taken up by Brumberg [11], and that
of Chandrasekhar and co-workers [7,8], followed by the
parametrized version of Will [12]. Neither approach con-
stitutes a useful starting point for us. Indeed, on the
one hand, Fock and Brumberg restricted themselves to
the (ill-defined) case of “rigidly rotating” bodies and in-
troduced some mass moments, which are not compatible
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with the ones that enter naturally the DSX formalism,
while, on the other hand, Chandrasekhar and Esposito
restricted themselves to the special case of perfect fluids
and chose basic variables that do not fit well within the
DSX scheme.

A more conveunient starting point for our purpose is
the work of Blanchet, Damour, and Iyer [13,14] (see
also [15]). These authors have defined global-frame post-
Newtonian mass and spin moments of an arbitrary, iso-
lated system of bodies in the form of integrals over
the compact supports of the bodies, and they explicitly
checked that the lowest moments were conserved quanti-
ties. Our task here will consist in transforming their ex-
pressions, involving integrals over the global-time simul-
taneity surface, into a combination of terms involving in-
tegrals over NV separate local-time simultaneity surfaces.
Notice that nothing guarantees a prior: that these ma-
nipulations will lead to final expressions containing only
the “good” moments introduced in the DSX scheme. In
fact, we shall succeed in this task for seven of the globally
conserved quantities and fail for three of them (the three
components of the trickier total angular momentum).

Let us note in advance that there are several limit-
ing cases for which it is already known that some of the
globally conserved quantities can be entirely expressed in
terms of some dynamically relevant individual multipole
moments. First, there are the cases where one truncates
the multipolar series: keeping only the monopole con-
tributions defines the “Lorentz-Droste—Einstein-Infeld-
Hoffmann” (LD-EIH) model, while also keeping the in-
trinsic spins of the bodies defines the “pole-dipole” (PD)
model. In both cases, we dispose of well-established
forms of the conservation laws (see, e.g., [5,6] for the
monopole case, and [16,17] for the pole-dipole case).
These will provide useful checks on our general results.
Another limiting situation of possible relevance is that
of a test pointlike mass moving in the gravitational field
of N — 1 extended bodies. The motion of the artificial
or natural solar system satellites is a typical case of this
category. Reference [4] computed explicitly the form of
the corresponding Lagrangian in terms of the gravita-
tional potentials (W, W,), which can be algorithmically
constructed using the formulas given in the Appendix of
[2]. However, in this case we have first integrals only
when the Lagrangian (describing geodesic motion) pos-
sesses some continuous symmetries (Noether’s theorem).
For instance, we can consider N = 2 with My << M (re-
stricted two-body problem) and with a stationary and/or
axially symmetric central body (see, e.g., Ref. [18] for a
study of a restricted problem of this type). This type of
limiting situation will not give us useful checks.

Finally, let us remark that we hope that the present
work will find practical applications in the relativistic
motion of binary stars or in the celestial mechanics of
the solar system. Let us recall, for instance, that one
simplifies the dynamical ephemeris of the solar system (at
the Newtonian approximation) by eliminating the motion
of the Sun via the algebraic relation expressing that the
total dipole mass moment of the solar system vanishes
for all time (in a suitably mass-centered frame [19]).

In Sec. II we consecutively discuss the cases of the
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mass-energy integral, linear momentum integral, and
briefly comment on the angular-momentum integral. Sec-
tion IIT contains a summary of our results. Throughout
the paper we follow the terminology and notation used
in Refs. [1-4].

II. FIRST INTEGRALS
OF THE DYNAMICAL LAWS

A. Comments on the change
of time-simultaneity integration domains

As mentioned in the preceding section, the transfor-
mation of integrals from the global to several local time
simultaneity surfaces is a common point to all particular
cases of conservation laws. We shall thus start our dis-
cussion with a brief technical comment concerning such
transformations.

Considering a specific body A, we study some integra-
tion

Ta(t) = /A &z f(t,x) , (2.1)

performed on the global time ¢ = const surface, where
f(z*) is some given function defined on the compact sup-
port of body A. We seek a transformation of the right-
hand side of Z4 such that it can be written as an integral
on a local-time T4 = T§(t) = const simultaneity surface,
say

Ta(TS(t) = /Ad”XA F(T5(t),X.4) . (2.2)

Here, T9(t) denotes the value of the local time (in the
reference system attached to body A) corresponding to
the event on the central world line of the body- A reference
system (X 4 = 0, also quoted as L 4), whose global time
coordinate is equal to t. In equations, if we write the
spacetime coordinate transformation between the global
coordinate system z* = (ct,z*) and the body- 4 local one
X§ = (cTa,Xg) as
ot = a*(X3) = 244 (Ta) + 4, (Ta) [ X3

5 AGKA — 5 (Aa-XA)XE], (23)

c c

TY9(t) is defined as the unique solution of ct = z°(T4,0),
ie., ct = 29(TS(1)).

First, let us denote by fa(Ta,X 4) the original function
f(t,x) reexpressed in terms of the local spacetime vari-
ables X§: fa(X3) = f(z*(X3)). By mathematically
transforming the variables of integration in Eq. (2.1) we
get

® -t
IA(t):/dsXA( aa—X ) fA [TA(taxA)axA] )
A T

t=const

(2.4)

where |0X /8w|£‘2const is the spatial Jacobian
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det(8X*/8z%) (a,i = 1,2,3) computed when keeping
the value of ¢ fixed and where T4 (¢,X 4) denotes the so-
lution of ct = °(T'4,X4). From Eq. (2.3) (or Egs. (A5)
of Ref. [2]), the latter quantity reads explicitly

1
Ty(t,X4) = TY(t) — EEV;;X;; +0(4),

so that by expanding fa[T4(t,X4),X4] in powers of
the small time shift (V4 - X4)/c? = O(2) we can ex-
press it within a sufficient accuracy in terms of functions
computed on a local-time simultaneity surface, namely,
T4 = const = T4(¢):

alTa (t,X4),X4] = fa(T4(t),X4)
~ SVAX50rfa (T3(), Xa)
+0(4) . (2.5)

As for the three-dimensional Jacobian entering Eq.
(2.4) it is easy to see that it can be expressed as

(3) 8t
B ( 3TA ) Xa=const

1 a
= [0 + Fasx°]

o9x |®

Bz

ox
oz

@
+0(4),

(2.6)

ox
oz

where [8X/0z|(¥) = det(0X*/0z*) is the full four-
dimensional Jacobian associated with the coordinate
transformation (2.3). The time derivative (9t/8T4) in
Eq. (2.6) is obtained from Eq. (2.3) or from putting
Vs = 0 in expression (A6) in Appendix A of [4].

Finally, we get

-1

@]
1
IA(t)z/A d3XA Oz } [eOAO (Tg) + C_ZA:ZXZ:I

2

X [.fA (T21 XA) - C%VXXZanA (TE,XA)] )
2.7)

where it is convenient to leave unexplicated the four-
dimensional Jacobian because it will be directly cancelled
when using the transformation laws of the mass and mass
current densities o* entering f4(t,x). For completeness,
let us, however, mention its value

8Xx (4)

2
—87 - C_ZW"(TvX) + 0(4) s

(2.8)

where W' (T,X) = G} — A3 X + O(2) is the inertial
contribution to the loca.l potential due to the change of
the time scale and the acceleration of the body-A frame.
Here, G/} = c?In(dT/d7s)a = v%/2 — c%IneY, + O(2)
measures the relative scaling, along the central world
line X§ = 0, between the local time T4 and the global
Minkowskian proper time dry = /—fu.dz*dz¥/c (see
Sec. VIE of [1]).

Note that, in geometrical terms, the mathematical
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transformations we have just performed correspond to
using a mapping between the ¢ = const and Ty, =
const = T'Y(t) hypersurfaces by means of the congruence
of world lines Lx+ of constant spatial local coordinates
(see Sec. IIID in (1]).

B. Mass-energy integral

The Blanchet-Damour post-Newtonian total mass-
energy m(t) of an isolated system can be written as [13]

m) = [@eo@) - 55 [Eale's)+0@), (29

where o, are densities of mass and mass currents [0 =
(T°° 4 T%)/c? and o* = T%/c; T*" denoting the compo-
nents of the stress-energy tensor in the global coordinate
system]. The integration in (2.9) is to be performed over
a global-time t = const hypersurface spanning the whole
N-body system. However, as o* is nonzero only in the
neighborhood of the bodies, we can directly use the re-
sults of the previous subsection to decompose m(t) as a
sum of N terms integrated over local simultaneity sur-
faces T(t) = const.

Let us recall the transformation law between the global
and local coordinate systems of the mass densities per-
taining to a given point of body A:

(4)

() — ,aX

(122 50

FSVESA0| +0(@),  (210)

as given in [1].
Putting together the definition (2.9) and the method
explained in Sec. IIA [where we note that the four-

dimensional Jacobian cancels between Egs. (2.7) and
(2.10)] we arrive after some algebra at

t) = MA1+i2+1dMAV)
m()—z 20274 2 dT, ( A

A

21+1
czZ

4+ ag")] +0(4),

(2.11)

where all quantities on the right-hand side must be eval-
uated at the intersection of the ¢ = const hypersurface
with the central world line of the corresponding body
li.e., for T4 = T9(t)]. We recall that the quantities
M4 (which are not constant in general) denote the lo-
cal, individual relativistic mass monopoles of each body.
Each M4 is a directly observable quantity in the sense
that it is just the gravitational mass measured from in-
terpreting the locally measured orbital motion of artifi-
cial or natural satellites around body A. Similarly the
M4 (for I > 1) are the locally measured mass multipole
moments of body A4, and G{ the locally felt tidal mo-
ments. The other quantities entering Eq. (2.11) are re-
lated to the way the local A-reference system is moving
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with respect to the global coordinate system [in partic-
ular GfA = (G4, —A%,+3A%2, A, /%,0,0,...) measure
the inertial contributions to the tidal moments felt in the
local A system]. The result (2.11) is new, and its pre-
cise form (e.g., the numerical factor 2/ + 1 in front of the
M#$G# product) is different from what one might have
naively expected from the standard Newtonian expres-
sion for the total energy (e.g., [20]).

As discussed in detail in Ref. [1] the DSX framework
leaves open some freedom in fixing several quantities re-
lated to the origin an orientation of the local coordinate
systems, as well as the gauge for the time coordinate
along the world line £4. We shall call “standard world
line data” the case where this freedom is used to sat-
isfy the following constraints: (i) VA ,VT4,M2(T4) =0
(which means identifying the origin of all local coordinate
systems with the relativistic mass centers of the bodies),
(i) VA,VTa ,WA(T4,0) = 0 (the so-called weak efface-
ment condition for the external gravitational potential in
the local frames). Note that we still leave unconstrained
the orientation of the local frame axes, which can un-
dergo a slow rotation described by the matrix R (7).
In the case of the standard world line data, Eq. (2.11)
simplifies to the form

stan 1
mst da"d(t) = Z{MA [1 + 202 (vi

A

Al

2l+1
202 Z } +0(4), (212
where Gy EB¢AG B/A Ypraw?(za) + 0(2)
[G'"y, = —G'; for standard data] denote the value

on the central world line £4 of the Newtonian po-
tential generated by all the other bodies [wB(z4) =
210 %GMfafle —zp|™'].

In the monopole (LD-EIH) or pole-dipole limit Eq.
(2.12) yields the well-known result that the total mass-
energy is the sum of the total rest-mass and the kinetic
and potential (x GM“AM?B /|z4 — zp|) energy terms. Let
us recall that, in the general case, the individual post-
Newtonian gravitational masses M4 are no longer con-
stant (because of tidal forces acting on the extended bod-
ies; see Egs. (4.20a) and (4.21a) of [2]) and that it is not a
priori evident that the quantities m(t) or mstardard(¢) are
conserved. As a check on our algebra, we have verified
by a direct calculation that this is indeed the case.

As an aside, let us conclude this subsection by noting
that if one defines, as an auxiliary technical quantity, the
“Fock mass” of the Ath body by the relation czMﬁ =
fA BX 4 (1+W/2c3)TY (where TY denote the X9-X9%
component of the stress-energy tensor considered in the
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local coordinate system Xg), one can write our result
(2.12) in a formally compact (and familiar looking) form.
The name we give to this quantity is based on the fact
that in his book [6] Fock used such an expression for
the total mass-energy. Note, however, that he always
used it in the global coordinate system. Owur definition
is written in the local system X g, but we use the total
potential in the local frame for W (T, X ), containing both
internally and externally (including inertially) generated
contributions. By using the expressions (4.15) of [2] for
the tidal expansion of W (T, X) we find (in any world
line gauge) the following relation between the Blanchet-
Damour mass and the Fock one:

M4 = 22 Z 2L 1Mg‘G +0(4). (213)

Thus in the case of standard data we can rewrite our
previous formula (2.12) in the following form:

mstandard(t ZMF [1 T ( i — qu)] +0®4).

(2.14)

Let us, however, emphasize again that it is only the
Blanchet-Damour mass M# that is directly observable
as a gravitational mass determining the orbital motion
of satellites of body A. The Fock mass M# is just a
mathematical construct.

C. Center-of-mass integral and linear momentum

The Blanchet-Damour post-Newtonian dipole mass
moment m;(t) of the whole system [13] can be written
as

ma(t) = / Bz zio(z)
14
c2 dt

(2.15)
d3z o’ (ziwj - %5,'1-:1:2) +0(4) .

It satisfies the conservation law [13]
dzm,- (t)

dt?
In fact, the first derivative of m;(t) is nothing but the

conserved total linear momentum of the system:

_ dmi(t)

T dt
Employing the results of Sec. IL A and definition (2.15)
we obtain, after tedious but straightforward calculations,

the following form of the total mass dipole moment m;(t)
of the system:

=0. (2.16)

= const . (2.17)

, 1 /1 1 ;. 3
mdt):Z{MAzh [1+c_2 (2 v5 +G")] = isi—c—zaimz

A

1 .
J
(3

%:{m [ + = (%vf,JrG{j,)] +

1 .
_aijzf,) R, l'Mg‘G

34 [M:“l)vz +2aMAGL] } +o(),

j A[a b]zlt }

(2.18)
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where s’Z = k8% = eijkE’jMSj, mfji”"'i" = eﬁaleijaz --~ei{'a"Mj‘“2'"a", where M2AM = dMA/dT4 and where the
square brackets in Rit[ aRiib] mean antisymmetrization [uavy = %(uavb — upv,)]. It should be emphasized that the
fact that the final expression (2.18) can be entirely written in terms of the good moments entering the DSX framework
is far from being a trivial result. In the intermediate calculations the “bad” moments (N, Pr) defined in Egs. (4.22)
of [2] enter at several places before finally cancelling. We also remark that the last sum in curly brackets vanishes if
one uses standard world line data, as defined above.

As mentioned in Sec. I, we can get partial checks on our results by considering models where the multipole series
is highly truncated. In particular, if we keep only the mass monopoles of the bodies (LD-EIH limit), formula (2.18)
reduces to

‘ ; 1 i 1 GM?5B
mip g = ZMAZA [1 +53 (v4 - Gg)] +0@4) = ZMAZA 1+ 55 vy — Z an +0(4), (2.19)
A A B#A

where the second row applies to the case of the standard world line data. Equation (2.19) agrees with previous results
[5,10]. In the case of the pole-dipole truncated model the expression for the mass dipole reads

; ; 1 i i
Mpp = Mip-Em + 3 D vhsi+0(4), (2.20)
A

a result previously derived by Damour and Schéfer [17] from the spin-dependent Lagrangian of Ref. [16].

Let us remark, as an aside, that defining some “Fock” local mass dipole moments for instance by cszF =
J4 B3X 4 X5(1+W/2c2)T does not at all simplify the writing of our result (2.18). In fact, this definition introduces
several bad algebraic structures (notably the moments N7; see [1-3]), which do not enter the final dynamical results
of the DSX formalism. This is one of the reasons why Fock, in his book [6], did not succeed in getting a good definition
of the mass centers of the individual bodies (in spite of the fact that, in the case of the mass center of the entire
isolated system, the Blanchet-Damour and Fock definitions, written in the global coordinate system, give the same
result; see Eq. (3.45) of [13]).

From the result (2.17) above, we can easily derive the following explicitly DSX-like expression for the total linear
momentum of the N-body system:

) 1 /1 1 + .. 3d /. .
— A 2 ! U 3
1 1 1 . ; 1
5% YT [lM}f(l)Gf’ +(1+1) M,j‘c:;‘(”’] -5 (u;,zg - Jiij.zA) R, > S MEGYH
T T

1/, 1 ; 1d s 2 5o i 1 d |, 4oa
= (Zilzi - 551'1'2,24) Raa D 51 qr; MEGL) = GraRaeRay > nar, (MaGix)
1 l
d , 2 1 ;d/ ;. 1 od . 2.

Again, the last sum of terms in curly brackets disappears in the standard world line gauge.
The LD-EIH form of the linear momentum is obtained by retaining only the mass monopole terms

; ; 1 GMB G GMAMBE ;
pLD—EIH=Z{MA’UA 1+@ ’Ui—"BZA rAB - T&'QT(HAB'VB)RAB}—FOVI) . (222)
A #

—

The presence of spin dipoles (in the framework of the PD  cause of the incompatibilities between the DSX and the
model) results in the additional term Fock approaches mentioned above, it is not possible to
compare directly our results with those given by Fock [6]

) . 1 A
Pop = Pipopmm + = Z alys9 +0(4), (2.23) ©°f Brumberg [11].
A

as mentioned in [17]. D. Angular momentum

As in the case of the total mass-energy, but with more
work, one can directly check that the global-time deriva- Damour and Iyer [14] and Ref. [3] have shown that the
tive of Eq. (2.21) vanishes to the indicated accuracy. Be-  treatment of the local individual spin of bodies, members
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of an interacting N-body system, faces serious problems
because of the unavoidable intervention of nonlinear, in-
terbody gravitational effects. Mathematically, this com-
plication manifests itself through the occurrence of bad
DSX moments (Ng,Pr). It has been, however, possi-
ble to reach a successful formulation of the individual
rotational laws of motion through a carefully adjusted
definition of the individual spin of each body [3]. In the
following, we briefly address the problem of breaking up
the total angular momentum into a sum of contributions
which make sense within the DSX framework.

The global angular momentum of the system reads
[6,14,3]
J

oi(z) = l%‘iﬁ

(3)
: . 11 .
{vf‘;e(}mﬁ + e, 2% + = [Zv’A "W+ cle
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s:(t) = eijk/dsma:j{ak [1 + %w]
-2 [411;" + %akatz(a:,t)]} +04), (2.24)

where z(z,t) = G [d®z’ o(2’,t)|x — x'|. For an isolated
system of arbitrary bodies it has been previously shown
that s;(¢) is conserved at the post-Newtonian level.

In order to preserve the post-Newtonian accuracy [i.e.,
modulo O(4)] of the result, one needs the transformation
law of the global mass current o*(z) to local coordinate
quantities with corresponding precision. After some al-
gebra one arrives at

HUX® — vy A X + Ry, (%Aﬁgxz - Aﬁ,‘,}X"X“)] 2

1 . . . . 1
+3 [2Rj4a "+ vh Ve — Ry, A4 X% + Ry, 0, (5.4?4)(2 - A;XCX”)]E"

17, . 1 .
—— [vhOr (X*VEE) + Riaobr (XPVAE?)] + 5 VAR, [T — 65T } +0(4)

(where e:ﬁ) = de%,/dT,, etc.), generalizing the formula
o* = vy ¥ + R4y 2% + O(2) used throughout the series of
papers [1-4]. [Note the three-dimensional Jacobian, as
defined in Eq. (2.6) above, in front of Eq. (2.25).]

Inserting this relation into the defining integral (2.24)
and using the method of Sec. IT A one obtains an expres-
sion of the form

si(t) =Y [¥# (M, Sp, G, Hi; P, Np) + 04 + 04]
A

(2.26)

where U# is a function of both the good DSX moments
(Mr,SL,Gpr,Hy) and the bad ones (Pr, Nr) and where
the remaining two terms [which follow from the last term
in Eq. (2.25)] read

020{11- = Ei.’ikzﬁlvafib fA BX 4 [Tab _ 5achC] ,
020541- = Giij‘iaVJngc fA d3XA Xe [Tbc _ ‘sbchd] )

Note that if we augment our list of bad moments
by including Q4 = [,d*XaT® and Q4. =
J4d®X4T®Xg, we can express the total spin s;(t)
in terms of some individual moments of the N bod-
ies. We tried to get rid of the nondynamical moments
(P#,N#,Q%) by using the local conservation of energy-
momentum (V,T*? = 0) to connect them to the dynam-

(2.25)

|

ical moments (M7, Sf) and the tidal ones (G4, Hf*). We
did not succeed in doing so. [In fact, such transforma-
tions introduced an undesirable dependence upon the in-
ternal part W3t (X) of the local gravitational potential.]
We thus hypothesize that the total spin s; of the sys-
tem is not algebraically reducible to the DSX dynamical
quantities.

III. CONCLUSION

The algebraic form of the global relativistic conserva-
tion laws has been examined within the perspective of
the DSX post-Newtonian dynamics of an N-body sys-
tem. We succeeded in breaking up seven of these conser-
vation laws (mass-energy, center-of-mass quantity, and
linear momentum) into a sum of individual contributions
involving only the basic dynamical quantities of the DSX
formalism. The angular momentum conservation law re-
sisted, however, our efforts.
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