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Relativistic spin effects in the Earth-Moon system
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Relativistic precession and nutation effects applied to the Earth and Moon coordinate systems
are discussed in detail. Apart from the effects common to the two reference systems (including
the well-known geodetic precession), the lunar reference frame undergoes an additional precession
of 28.9 millarc sec/century. This value is theoretically within the range of the lunar laser ranging
(LLR) technique in the forthcoming years, but impossible to decorrelate from other secular effects
of selenophysical origin. Because of a nearly perfect cancellation of the de Sitter and Lense-Thirring
phenomena, additional nutations of the lunar referential are below the sensitivity of the LLR. An
analogous cancellation occurs also for the secular part of the Lense-Thirring precession of the Earth-
Moon referentials. A terminological ambiguity of the geodetic precession constant notion, related
to the inclusion of some of the Lense-Thirring terms, is pointed out.

PACS number(s): 04.25.Nx, 95.10.Jk, 95.30.5f, 96.20.—n

I. INTRODUCTION

Recently, Damour and co-workers [1-3] have developed
a general scheme for the modeling of post-Newtonian dy-
namics (both translational and rotational) of a system
of weakly self-gravitating extended bodies. A detailed
theory of the coordinate systems is a natural part of the
approach.

In this paper we address the problem of the correspon-
dence between local systems attached to a given moving
body and the global system used to describe the mo-
tion of all bodies. Although principles of general relativ-
ity admit arbitrary coordinate systems, it appears that
judicious choice makes the mathematical problem much
simpler. Such a kind of coordinate system is commonly
called dynamically nonrotating because of the absence of
the relativistic Coriolis effects [3] (sometimes also “quasi-
inertial frame” [4-6]). Another commonly recommended
choice for the rotational state of the local coordinate sys-
tems, called kinematically nonrotating, does not relate
to the dynamical principles but to the simplicity of the
coordinate transformation between the local and global
systems. In the latter approach, recommended by the
IAU Working Group on Reference systems [7,8], the di-
rection of the local frame axes coincides with that of the
global one. In this case one has to apply the relativistic
Coriolis force “oc €2, X S” in local body systems. In both
approaches the relativistic spin effects remain. One nat-
urally faces the question of implementation and observ-
ability of these phenomena in case of actual dynamical
systems.

The Earth-Moon system seems to be promising for de-
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tection of the relativistic effects thanks to the availability
of very high accuracy positional data obtained by the lu-
nar laser ranging (LLR) technique. The lunar motion is
thus the most precisely known among the natural bodies
because of the current LLR technology precision of about
2-3 cm for the distance. In the coming decade, with the
use of multicolor lasers, an improvement is expected up
to the ultimate limit of about 2-3 mm for normal points
of the lunar motion [Ch. Veillet (personal communica-
tion)]. Corresponding technical improvements are being
implemented on the French lunar laser station at the Ob-
servatoire de la Cote d’Azur. Translated into amplitudes
of the lunar librations the current best performances are
on the level of 1 milliarc sec with an ultimate precision
limit of about 0.3 milliarc sec.

Thanks to these high quality data the Earth-Moon dy-
namics has already been used for important relativistic
tests. First, one has to mention the significant con-
tribution to the equivalence principle testing via “the
Nordtvedt effect” [9-12]. Second, the principal term of
the de Sitter precession of the Earth-Moon center-of-mass
frame has been detected with a precision of about 1%
[10-14]. Finally, a theoretical modeling of a new class of
relativistic lunar librations has been recently presented
[15]. On the other hand, one must be aware that from
the relativistic point of view the Earth-Moon system is
“polluted” by a lot of phenomenologically modeled geo-
physical and selenophysical phenomena, namely those re-
lated to the inelastic deformation of the two bodies.

In this paper, we focus on detailed elaboration of the
relativistic rotational effects of the reference frames in the
Earth-Moon system. A subclass of these effects, common
to the two referentials, may be attributed to the rota-
tion of the Earth-Moon center-of-mass system (including
the widely known de Sitter term having the magnitude
of about 1.9194 arc sec/century). However, because of
mutual Earth-Moon dynamics both referentials are also
submitted to individual precession and nutations. Their
principal terms are evaluated. It is shown that the addi-
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tional precession of the lunar reference frame is within the
capabilities of the LLR technique. However, because of
difficulties in decorrelating it from the other (phenomeno-
logically modeled) effects, it is hardly seen in the data.
A similar situation occurs for the newly described rela-
tivistic nutations of the lunar reference system because
of fine cancellation of the de Sitter and Lense-Thirring
phenomena. Corresponding terms of the Earth reference
system coincide with those computed recently by Brum-
berg and co-workers [16,17]. Also the ambiguity in the
precise definition of the geodetic precession constant is
briefly discussed.

Finally, it is to be noticed that the phenomena dis-
cussed in this paper are not to be mistaken for the rel-
ativistic perigee precession of the lunar orbit because of
the Earth mass gravity monopole [18,19].

II. RELATIVISTIC SPIN EFFECTS
FOR REFERENCE SYSTEMS

A. Background

Formally, the relativistic Coriolis force term in the
equations of rotational motion in a given local coordi-
nate system of body A reads!

dSA Coriolis 1
2 = ——Eachfo )
dTA R 262

(2.1)

where S2 is the first post-Newtonian (1PN) spin vector of
body A, T4 is the local coordinate time, €4, is the usual
Levi-Civita fully antisymmetric symbol, and HZ is the
central gravitomagnetic field in the coordinate system of
the Ath body. Detailed analysis shows [3] that the lat-
ter quantity is composed of two parts, one depending on
the dynamical state of the external bodies and another
depending only on the dynamical state of the reference
frame of the Ath body (i.e., on the manner how it is re-
lated to the global coordinate system). If V4 and A4
denote, respectively, the velocity and acceleration of the
origin of the coordinate system of the Ath body, Rt the
orthogonal rotation matrix involved in the transforma-
tion between the local system of body A and the global
coordinate systems, w4 and W4 the scalar and vector
post-Newtonian potentials of the external gravitational
field measured in the local system of body A, one has

H, (TA) = — 4Ei,1'ka4a [Bju‘),‘f + vf‘é)ku‘;A]L

A
+ €ave |V AL + czi&“—bR;c (2.2)
dT'y

La

An approximation of the potentials sufficient for our pur-
poses is given by

'As discussed in detail in Ref. [3], it is this term which can
take the kinematical interpretations of the body A reference
frame relativistic rotation.
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where Mp’s are the mass monopoles of the individual
bodies, r}é = z' — 24 with ziB being the coordinate, in
the global reference system, of the frame with origin at B
and s3 = e,-jks’g = fiijlfan%' Symbol £, means that
the bracket term has to be evaluated at the origin of the
coordinate system of body A and O(2) = O(c™2) points
neglected post-Newtonian terms. Notice the absence of
spin contribution to the scalar potential w#4. As for the
rotation matrix Ran, either it is submitted to the trivial
condition R%, = ;o to express the absence of kinemat-
ical rotation or one adjusts its value in order to cancel
the gravitomagnetic field HA(T4) at any instant, which
is equivalent to the absence of dynamical rotation. Al-
though this choice has been adopted in this paper, our
results can be easily transposed in the other way, with
the appearance of the Coriolis term in Eq. (2.1).

Introducing the angular velocity vector Qf character-
izing rotation of the dynamically nonrotating frame of
the body A with respect to the global coordinate system
by

1 dR,,

f = —Eeijk'mRﬁa , (2.4)
we obtain
= 1 2 2 -
QAz———z\_l‘AXé‘A-F—Z\_;AXV'U_)A—*——ZVXWA,
2c c [
(2.5)

which has to be compared with corresponding terms in
[18,20,21]. Notice, that in the parametrized version of the
post-Newtonian theory factors 2 in the last two terms of
Eq. (2.5) are to be replaced by (1 + ), where v is the
traditional Eddingtonian post-Newtonian parameter. If
only gravitational forces are applied one advantageously
combines the first two terms into a single one with factor
(v + %) In agreement with the common terminology
[18] we shall refer to them as the geodetic terms. The
last term in Eq. (2.5) then expresses gravitomagnetic or
Lense-Thirring phenomena.

In the following, we shall investigate the influence of
all terms in Eq. (2.5) on the dynamics of the coordi-
nate frames in the Earth-Moon(-Sun) system. We adopt
the following notation: index C is reserved for the Sun,
index B for the Moon (with mass Mpg) and index A
for the Earth (with mass M,). Since Eq. (2.5) is lim-
ited to the terms in 1/c?, we can use for the vectors of
position, velocity, and acceleration Newtonian approxi-
mation. The center-of-mass of the Earth-Moon system
is assumed to move on an elliptic orbit with semimajor
axis aj, eccentricity e;, and mean motion n; around the
Sun, which is supposed to be located at the center-of-
mass of the global coordinate system. We thus neglect
the solar motion with respect to the global system, an
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approximation justified by the inverse mass ratio of the
Sun and the Earth-Moon system of about 328 900. The
mutual Earth-Moon dynamics is approximated by the
elliptical motion with semimajor axis as, eccentricity e,
inclination I with respect to the ecliptic plane and mean
motion ny. The following abbreviations will be used:
Map = My + Mg, ¢ =sinl. If R denotes the position
of Earth-Moon center-of-mass in the global system and
r(=rpa) = zp — z4 the Earth-Moon vector, positions
of the Earth and Moon in the global coordinate system
are

Mp
=R - 2.6
ZA MABr 9 ( a‘)
My
zg = R + r, 2.6b
B Mg (2.6b)

and similarly for the velocities. An analogous relation
can also be established for the accelerations provided the
solar tidal terms are neglected in the Earth-Moon center-
of-mass system. Within the accuracy aimed at in this
paper, these terms can be safely omitted.

Our representation of the Earth-Moon(-Sun) dynam-
ics is thus much simpler than in the case considered
by Brumberg and co-workers [16,17] who implemented
for similar calculations the analytical planetary theory
VSOP87 [22]. However, simplified formulas given in the
following sections yield a better view of the structure of
the particular terms and allow us to localize and discuss
clearly the discrepancy between geodetic precession con-
stant given by Brumberg et al. [16,17] and by those of
the IERS Standard [8] (also, e.g., in [23]).

As the investigated system is close to the planar three-
body problem, remind that ¢ =~ 0.087, the main relativis-
tic precession and nutations contribute to the rotation
around the ecliptic normal. It is thus natural to adopt an
ecliptic global coordinate system with the z axis normal
to the ecliptic plane. The following two sections are de-
voted to the analysis of the geodetic and Lense-Thirring
terms related to the rotations around the ecliptic nor-
mal for both the terrestrial and lunar reference systems.
In order to simplify notations, we omit the index “z2” in
the computed quantities. Final subsection D is devoted
to the computation of new nutations of the lunar coor-
dinate system around the in-ecliptic plane axes. It will
be demonstrated that their amplitudes are surprisingly
greater than those for the corresponding nutations about
the third axis as a result of (i) a fine-tuning and can-
cellation of the geodetic and Lense-Thirring terms con-
tributing to the out-of-ecliptic “z” component, and (ii)
an associated long period, given by the lunar node rate,
with the in-ecliptic components.

B. Application to the Earth-Moon(-Sun) system —
geodetic terms

First, we focus on the secular geodetic phenomena re-
sulting from the first two terms in Eq. (2.5). Inserting
global frame velocity and accelerations of the investigated
bodies A and B we obtain the secular rates
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2= (v+3) [(B2) 125
N ( My )2 (n2a2)2n2 V=2

2.
MAB C 1—6%]’ ( 8)

characterizing the relativistic precession of the corre-
sponding referentials. After an additional integration of
Egs. (2.7) and (2.8), one sets the angles of precession of
the two referentials [to be denoted 64 and 65|

_ 1 nia 2 U
OA_(’Y+_2-) [( c ) 1-—6%

+ MB 2 (Tbgaz)zl\/1—b2 (2 9)
MAB C 1~6§ ’ )
and
_ 1 niai 2 U
03_(7+§> [( c ) l—ef
2 2 )
+< My ) (’nzllz) V1 : ] _ (2.10)
MAB c 1-—62

Here, [ and I’ are the mean anomalies of the Moon and the
Sun. The first parts of the previous formulas, which are
common to the two coordinate systems, are the usual de
Sitter precession which have been known since 1916 [24].
Its rate is of about 1.9194 arc sec/century [23,25] and it
is due to the solar gravity field. The second terms in Egs.
(2.9) and (2.10) are specific to each reference frame and
follow from the mutual Earth-Moon gravitational inter-
action. Their difference reads

_ 1 ngaz\2 V1 —12 M4 — Mp
5QAB_(7+§>( c ) "I T Map

(2.11)

If the Earth-Moon system parameters are substituted
one obtains 6Q4p ~ 28.9milliarc sec/century. Natu-
rally, most of this is because of a secular advance of
the lunar reference frame. Because of the small value
of (Mp/M4g)? the Earth reference frame is subjected to
an additional relativistic precession of about 0.004 mil-
larc sec/century.

Notice that previous formulas for the secular rates of
the two local coordinate systems relating to the orbiting
bodies A and B are given in closed form in small param-
eters (¢, e, and ep).

Periodic terms called nutations (following the termi-
nology of Fukushima [25]), are superimposed to the
geodetic precession. Analogously to the case of the sec-
ular effects mentioned above, the main relativistic nuta-
tion terms have their origin in the solar gravity (and are
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thus of “the tidal origin”). Annual and semiannual terms
derived by Fukushima [25] have amplitudes of 0.153 mil-
liarc sec and 0.002 milliarc sec (see also [15,26]). They
are again common both to the Earth and Moon reference
frames. In the following, we shall derive another class
of relativistic nutations arising from the mutual Earth-
Moon dynamics. As a consequence, their period equals
one synodic month. Following the classical theories of
the lunar motion, we shall denote the mean longitudi-
nal elongation of the Moon and the Sun by the Delau-
nay variable D and the ratio of the mean motion of the
Earth-Moon center-of-mass around the Sun and the lu-
nar synodic mean motion by m [thus m = ny/(n2 — n4)],
and we have m = 0.081.

Inserting the global frame velocity and accelerations of

|
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the involved bodies into the first two terms of Eq. (2.5)
and retaining only terms of the zeroth order in the power
series in eccentricity e; and inclination ¢ we obtain (apart
from the previously mentioned Fukushima terms)

1 MB az (MNi1a; 2 n
= - Y = — 1+ —=
JQA ( + ) M L ( ) n2 L cos D

+0(ez, (), (2.12a)
_ 1 My az fnia1\2 n2
593-(7—0— 5) MABa_l( - ) Ny <1+n1)cosD
+0(e2,:?), (2.12b)

and the corresponding solution for the local system nu-
tations,

_ 1\ Mg az fnia1\2 (1+m)(1+2m) . 2

804 = (,), + 2) Map a. ( - ) - sin D + O(eg,¢?) (2.13a)
_ 1\ M4 a3 (nia1\2 (1+m)(1+2m) 2

00 = ('y + 5) Map o, ( - ) - sin D + Of(ez, %) . (2.13b)

In the case of the lunar referential these synodic terms
have an amplitude comparable to the first Fukushima
nutation term (approximately 0.1 milliarc sec). We shall,
however, see in the next section, that a great part of
the effect is canceled by the corresponding synodic term
because of the Lense-Thirring effect.

C. Application to the Earth-Moon(-Sun) system —
Lense-Thirring terms

Next, we evaluate the principal effects due to the last,
Lense-Thirring, term of Eq. (2.5). By restricting to
the secular effects and substituting the vector potential
(2.3b) into formula (2.5) we obtain two kinds of effects.
The first is because of the solar angular momentum and
reads

_r+1 GSc

Q4 = :
AT T d(-en)

(2.14)

while the second, linked to the total angular momentum
of the Earth-Moon system, reads

MaMp [n2a2\2 V1—.2
O +1) T (F52) e 1_e?

_1+1 GL3p
T2 a3(1-—e2)3/2

Q4

Il

c

(2.15)

[G is the gravitational constant]. The same contributions
appear in the Lense-Thirring precession of the body B
frame. Interestingly, both secular Lense-Thirring phe-
nomena nearly cancel out for the Earth-Moon system.
The Earth-Moon angular momentum term (2.15) yields a

value of about 0.47 milliarc sec/century and the solar in-
duced term (2.14) amounts to —0.28 milliarc sec/century.
One must notice, however, that the latter depends on
the total solar angular momentum S¢, which is not well
known [27].

In the most complete investigation of the relativis-
tic spin effects of the Earth reference frame by Brum-
berg and co-workers [16,17], the authors seem to include
arbitrarily the second Lense-Thirring precession (2.15)
in the definition of the geodetic precession constant (in
the broader sense following their terminology). As a
result, their corrected value of the geodetic precession
constant is 1.9199 arc sec/century instead of the value
1.9194 arc sec/century deduced from the first two terms
of Eq. (2.5). In our opinion it might not be a favorable
route, as the first Lense-Thirring term (2.14), investi-
gated previously, is of the same order of magnitude as
the second one. Moreover, not only has it an opposite
sign but its value is uncertain, at least by a factor of 2,
because of the uncertainty of the total solar angular mo-
mentum [27]. It may thus happen by chance that the
Brumberg et al.’s additional term in the geodetic preces-
sion constant will be canceled by an opposite contribution
because of the solar rotation Lense-Thirring term. How-
ever, it should be acknowledged that the discussed Lense-
Thirring originated terms are by a factor of 30 smaller
than the current precision level of the dynamical deter-
mination of the geodetic precession [9-12]. The dom-
inant cause of this uncertainty is because of the poorly
known second zonal harmonic J; of the Moon [11,12]. Of
course, an improvement in the determination of this pa-
rameter by future lunar missions combined with a larger
time span of the LLR data will make the determination
of the geodetic precession more accurate. However, with
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current state of the art, it is unlikely that the dynamics
of the Earth-Moon system could contribute significantly
to a precise determination of the Lense-Thirring effect,
and other opportunities are discussed, for instance, in
Ref. [18].

As for the periodic terms in the Lense-Thirring (LT)
effect (LT nutations), they are given by?

_ MB as N2 [MN107 2
JQA—(’Y_*_]-)_MEGT—TE( . ) ng cos D
+0(627 L2) ) (2.16&)
MA as Ny (MN1ay1 2
= 92 2 D
QB (v+1) Map a1 10 ( - ) N COS
+0(es, %), (2.16b)

which give after integration the nutation angles, as

. Mp az (nia;\2 (1+m)? .
804 =(v+1) MABZI.—;( . ) - sin D
+0(e2,:%), (2.17a)
_ My az (nja\2 (1+m)? .
00 =—(v+1) Mg as ( . ) - sin D
+0(ez,(?) . (2.17b)

Collecting the synodic nutations given previously, both
of the geodetic and Lense-Thirring origin, we observe
that a significant part of them cancels out. The final
relativistic synodic signal reads

1 MB az [MNi1a; 21 +m .
804 = - az ( ) 1-2 D
4 ZMAB aiy C m ( ’Ym) st
+0(ez,:?) (2.18a)
1 MA az [M1aq 214m .
805 = —= %2 ( ) 1-2 D
B 2Mup ay c m ( ym) sin
+0(ez,:?) . (2.18b)

Substituting the relevant numerical values into formulas
(2.18) we obtain an amplitude of 0.03 milliarc sec for
the lunar coordinate system, and 4 x 10~* milliarc sec
for the terrestrial coordinate system. The latter value
related to the Earth referential coincides with the result
of Brumberg and co-workers (Ref. [16], Eq. (4.3)).

Tables I(a) and I(b) show briefly various phenomena
studied throughout the text. Phenomena common to
the two referentials are distinguished from the individ-
ual terms.

D. Application to the Earth-Moon(-Sun) system —
ecliptic terms

Finally, we discuss briefly relativistic nutations around
the in-ecliptic axes (e, e,). The two main motivations in
performing this work are as follows: (i) a fine cancellation

2We again omit all eccentricity and inclination :-dependent
terms.
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TABLE 1. Schematic description of the relativistic spin ef-
fects related to the definition of the local (dynamically non-
rotating) lunar (LS) and terrestrial (TS) coordinate systems.
Secular effects, denoted as “precession,” are given in part (a),
periodic effects, denoted as “nutations,” are given in part
(b) (P in the fourth column indicates the period). Com-
mon terms which can be equally assigned to the Earth-Moon
center-of-mass coordinate system (including the principal de
Sitter term) appear between the columns of the two refer-
ence systems. Common Lense-Thirring precession is split
into two pieces: (i) LT-1 originating in the coupling be-
tween the solar gravity field and the angular momentum of
the Earth-Moon system (the term added to the newly pro-
posed value of “the geodetic precession constant”), (ii) LT-2
originating in the coupling between the solar angular momen-
tum and the Earth-Moon translational motion. The individ-
ual geodetic and Lense-Thirring nutations of both reference
systems are of opposite sign and of comparable magnitude.

(a)

Precession (milliarc sec/century)

Source terms TS LS
Principal geodetic 1919.36
Individual geodetic 0.004 28.86

LT -1 0.47
LT -2 -0.28
(error = 100%)
(b)
Nutations (milliarc sec)

Source terms TS LS P
Fukushima - 1 0.15313 1 year
Fukushima — 2 0.00192 0.5 year

Individual geodetic -0.001 47 0.11964 29.5 days

Individual LT 0.001 82 -0.148 32 29.5 days

of the lunar nutations discussed previously, (ii) possible
appearance of small divisors related to the small rate
angles (e.g., longitude of the lunar orbit node 2). Careful
inspection of the Brumberg et al. [16] results strongly
supports this possibility.

Substituting necessary components of the global sys-
tem velocities and accelerations into Eq. (2.5) we find
dominant nutation terms in the form

T 1 MA 2 naa2 2 N2
60% = ('y+2) (MAB> ( - ) LQcosQ,

(2.19a)

1 My 2 naaz\2 ng .
Yy — — 4
60% = (»Y_*_z) (MAB) ( - ) t—=sin Q2 .

(2.19b)

The amplitude of both terms in Eqgs. (2.19) is approxi-
mately 0.09 milliarc sec, greater than that of the relativis-
tic nutations around the axis normal to the ecliptic plane.
Considering a rotating axis n(Q2) = cosQ e, + sinQ e,
in the ecliptic plane, one can also represent nutations
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(2.19) as a precession around n(f2) with the rate of
2.58 milliarcsec/century. Finally, one must bear in mind
that excitations associated with the long-period plane-
tary perturbations are likely to exist (see [16]).

Similar search for the dominant terms in the case of
the terrestrial reference frame allows to recover 18.6 year
terms in [16]. Interestingly, these Earth system nutations
are of Lense-Thirring origin. Inversely, corresponding lu-
nar nutation terms given in formulas (2.19) originate in
the geodetic part of Eq. (2.5).

III. CONCLUSION

The relativistic precession and nutation of the lunar
and terrestrial coordinate systems has been examined.
The main terms connected to the Earth-Moon center-
of-mass referential have been identified together with in-
dividual terms of the two local coordinate systems re-
lated to the mutual Earth-Moon dynamics. In particular,
those related to the relativistic effects of the terrestrial
reference system coincide with the principal terms given
by Brumberg et al. [16].

New terms include mainly additional relativistic pre-
cession of the lunar reference system with the rate of
28.9 milliarc sec/century. This effect is in principle “mea-
surable” using the best LLR data, but because of the
secular character that can be hardly separated from the
tidal secular effects (e.g., [28]). But it might be wise
to subtract this value from the observed lunar data to
achieve a better fitting of the tidal terms to the observed
ranges. The corresponding secular Lense-Thirring term
of the common Earth-Moon center-of-mass system is very
small, largely because of the cancellation of the term
linked, respectively, to the solar and the Earth-Moon an-
gular momenta. Even with an improved LLR technology,
its measurement will be hardly feasible. Important ex-
perimental confirmation of the Lense-Thirring effect thus
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requires the use of other techniques (e.g., satellite born).
The amplitudes of the new relativistic lunar nutations
are unfortunately very small, in part as a result again of
a nearly complete cancellation of the geodetic and Lense-
Thirring terms.

Corresponding results for the Earth reference frame are
also small if compared with the capabilities of the current
astrometric techniques reaching maximally the level of a
few 0.01 milliarc sec [29,30]. However, future astrometric
projects [31,32] at the microarc sec level will need to allow
for the Earth frame precession and nutations given in the
previous sections and in Ref. [16].

Finally, it is useful to draw attention to the question
of terminology when speaking of the geodetic preces-
sion. Its “broader sense” pioneered by Brumberg and
co-workers [16] (later also included in [33,34]) includes in
fact a Lense-Thirring term resulting from a coupling be-
tween the solar gravity field and the angular momentum
of the Earth-Moon system. Another Lense-Thirring term
because of the coupling between the solar angular mo-
mentum and the translational motion of the Earth-Moon
center of mass, ignored in the analysis of Brumberg et al.,
however, is of the same order of magnitude but of oppo-
site sign. Moreover, the latter term has an uncertainty of
nearly 100% because of the badly determined solar an-
gular momentum. Terminological unification among the
astronomical community is desirable in the future, as the
IERS Standard recommended value still follows geodetic
precession in the “narrow sense” based only on the first
two terms of the fundamental formula (2.5).
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