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ABSTRACT

The leading theory for the origin of Jupiter Trojans (JTs) assumes that JTs were captured to their orbits near the Lagrangian points
of Jupiter during the early reconfiguration of the giant planets. The natural source region for the majority of JTs would then be the
population of planetesimals born in a massive trans-Neptunian disk. If true, JTs represent the most accessible stable population of
small Solar System bodies that formed in the outer regions of the Solar System. For this work, we compiled photometric datasets for
about 1000 JTs and applied the convex inversion technique in order to assess their shapes and spin states. We obtained full solutions
for 79 JTs, and partial solutions for an additional 31 JTs. We found that the observed distribution of the pole obliquities of JTs is
broadly consistent with expectations from the streaming instability, which is the leading mechanism for the formation of planetesimals
in the trans-Neptunian disk. The observed JTs’ pole distribution has a slightly smaller prograde vs. retrograde asymmetry (excess of
obliquities >130◦) than what is expected from the existing streaming instability simulations. However, this discrepancy can be plausibly
reconciled by the effects of the post-formation collisional activity. Our numerical simulations of the post-capture spin evolution indicate
that the JTs’ pole distribution is not significantly affected by dynamical processes such as the eccentricity excitation in resonances, close
encounters with planets, or the effects of nongravitational forces. However, a few JTs exhibit large latitude variations of the rotation
pole and may even temporarily transition between prograde- and retrograde-rotating categories.
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1. Introduction

Jupiter Trojans (JTs) are minor bodies co-orbiting with Jupiter in
the proximity of its Lagrangian points L4 and L5. Bodies librat-
ing about the leading L4 point are commonly referred to as the
Greek camp (or clan or group), while those near the trailing L5
point are referred to as the Trojan camp. As for the currently
known population of Greeks and Trojans, we adopt in this work
a list of JTs as identified by the orbit classification flags in the
MPC Orbit (MPCORB) database1.

The origin of JTs remains an open problem. The currently
leading theory assumes that JTs were captured to their orbits near
the Lagrangian points during the early reconfiguration of the
giant planets (Morbidelli et al. 2005; Nesvorný et al. 2013). The
natural source region for the majority of JTs would then be the
population of planetesimals born in a massive trans-Neptunian

⋆ Tables B.1–B.5 are available at the CDS via anonymous ftp
to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/679/A56
1 MPCORB.DAT file available at https://www.minorplanetcenter.
net/iau/MPCORB.html

disk. As a result, JTs should share the physical properties of the
currently observed trans-Neptunian objects (TNOs), as well as
the comets and irregular satellites of giant planets. Other theories
avoid involving the planetary reconfiguration event and postulate
that JTs formed at their current location together with Jupiter (see
reviews in Marzari et al. 2002; Emery et al. 2015), or were born
in the Jupiter co-orbital zone and accompanied its early inward
migration (Pirani et al. 2019). In this paper, we adopt the cap-
ture model for JTs as a baseline hypothesis, because several other
pieces of evidence support the view that giant planets underwent
a violent instability at some early moment of the Solar System
evolution (see, e.g., Nesvorný 2018). In any case, studying the
physical properties of JTs is an obvious way how to test various
theories of the JTs’ origin and eventually decide which theory is
more in line with the observing evidence. In fact, this is also one
of the main goals of our work.

Previous physical studies have already revealed interesting
properties of JTs. For instance, analysis of visible and near-
infrared spectra suggested that a color bimodality exists in the
JTs’ population (e.g., Emery et al. 2011; Wong & Brown 2016):
the majority of bodies belong to the so-called red (D-type) and
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less red (P-type) groups. This color bimodality hints at the rela-
tionship between the spectral properties of JTs and of comets and
TNOs. On the other hand, C-type bodies, which represent about
10% of the JT population and – for instance – include the largest
collisional JT family Eurybates, are spectrally more similar to a
primitive outer asteroidal belt or Cybele group objects (Fornasier
et al. 2007; De Luise et al. 2010).

In closer relation to our work, we note that a significant
amount of data was collected about JTs’ rotation rate since the
1980s (see reviews in Barucci et al. 2002; Emery et al. 2015).
Hints from these early studies have been recently confirmed and
extended by analysis of space-born observations from Kepler
and Transiting Exoplanet Survey Satellite (TESS), and dedi-
cated survey programs using large ground-based instruments
(e.g., Szabó et al. 2016; Ryan et al. 2017; Kalup et al. 2021;
Chang et al. 2021). These studies find (i) an excess (possibly
even separate population) of slowly rotating objects, and (ii) a
presence of a size-dependent lower limit of the rotation period,
such that smaller JTs may reach shorter periods to near 4 h, while
larger JTs tend to have this limit near 5 h. The latter nicely sup-
ports a rubble-pile structure of JTs with a characteristic bulk
density of ≃0.9 g cm−3, and the emerging role of the Yarkovsky-
O’Keefe-Radzievski-Paddack (YORP) effect for small JTs (e.g.,
Vokrouhlický et al. 2015). The population of unusually slowly
rotating JTs is interesting in the context of our work since it has
been linked to unbound components from tidally evolved binary
planetesimals captured among Trojans (Nesvorný et al. 2020).

While a significant amount of data about the rotation rates
of JTs have been collected and analyzed, much less is presently
known about the complete characterization of their spin state
(i.e., rotation rate and pole direction). Here we aim to fill this
missing piece of information by deriving rotation state properties
and convex shapes for many JTs. Particularly, we are interested in
the direction of the rotation axis with respect to the orbital plane
– the pole obliquity. This parameter reflects the object’s dynam-
ical history and could help constrain various theories aiming to
explain the population’s origin.

Our paper is organized as follows. We gathered available
optical photometric data (Sect. 2) from various sources and ana-
lyzed them using a convex inversion method (Kaasalainen et al.
2001; Kaasalainen & Torppa 2001) following, with some minor
adjustments, the scheme of Hanuš et al. (2021; Sect. 3). We
present derived physical properties in Sect. 4. Adopting the cap-
ture model for JTs, we also performed numerical simulations to
(i) access the original spin distribution of the planetesimal popu-
lation that is assumed to be the source population of JTs (Sect. 5),
and (ii) estimate the post-capture spin evolution of JTs (Sect. 6).
Finally, we discuss our findings in Sect. 7, and conclude our work
in Sect. 8.

2. Data

We gathered optical disk-integrated photometry from various
sources. First, data for asteroids with published shape mod-
els are usually available in the Database of Asteroid Models
from Inversion Techniques2 (DAMIT; Ďurech et al. 2010). Addi-
tional dense-in-time light curves were downloaded from the
ALCDEF3 database or were obtained from individual observers.
Moreover, we also make use of sparse-in-time photometric data
from various surveys. These include Catalina Sky Survey (CSS;
Larson et al. 2003), the US Naval Observatory in Flagstaff

2 https://astro.troja.mff.cuni.cz/projects/damit/
3 https://minplanobs.org/alcdef/

(USNO-Flagstaff), the Asteroid Terrestrial-impact Last Alert
System (ATLAS; Tonry et al. 2018), the All-Sky Automated Sur-
vey for Supernovae (ASAS-SN; Shappee et al. 2014; Kochanek
et al. 2017; Hanuš et al. 2021), Gaia Data Release 3 (Gaia DR3;
Tanga et al. 2023; Babusiaux et al. 2023), the Zwicky Transient
Facility (ZTF; Bellm et al. 2019), Kepler K2 (Szabó et al. 2016;
Kalup et al. 2021), Palomar Transient Factory (PTF; Waszczak
et al. 2015), and TESS (Pál et al. 2020).

Individual photometric measurements from CSS, USNO-
Flagstaff, and ZTF are available via AstDyS-2 database4, from
where we downloaded them and processed them following the
approach of Hanuš et al. (2011). Data from ASAS-SN, Gaia
DR3, K2, TESS, and PTF were released together with the
corresponding publications. We downloaded the data from the
repositories and processed them similarly to the other sparse-
in-time data. We already used ATLAS and ASAS-SN data
in previous studies (Ďurech et al. 2020; Hanuš et al. 2021),
to which we refer for additional information about the data
processing.

Altogether, we obtained optical datasets for 1009 JTs. In all
cases, sparse-in-time datasets are included, usually from mul-
tiple sources. Dense-in-time light curves are available for a
subsample of 164 JTs.

3. Light curve inversion

We analyzed the optical photometry data using the convex inver-
sion method (Kaasalainen et al. 2001; Kaasalainen & Torppa
2001). This commonly used gradient-based inversion method
represents the shape model as a convex polyhedron; convexity
is a necessary assumption for the shape solution to be stable and
unique as only disk-integrated data are utilized (Kaasalainen &
Lamberg 2006). The method converges to a unique shape solu-
tion for fixed values of the rotation state parameters – sidereal
rotation period and spin axis orientation5. Including these (usu-
ally unknown) parameters into the optimization, the χ2 behavior
over the parameter space becomes complicated by having a
myriad of local minima. The most common, albeit computation-
ally cumbersome, way how to find the global minimum in the
parameter space is to analyze all the relevant local minima. In
practice, this represents undergoing a CPU time-consuming pro-
cedure of running convex inversion for all relevant combinations
of rotation state parameters and constructing the corresponding
χ2 maps.

We followed the shape modeling procedure described in
Hanuš et al. (2021) with one major difference – data weight-
ing. By definition, the best model is defined as having the lowest
χ2 value. In order to compute χ2, one should know the uncer-
tainty of individual observations, especially when multisource
datasets are utilized. However, these uncertainties are generally
not known or are not reliable for the majority of data we have.
Moreover, the data we utilized have very different uncertainty
– from precise Gaia photometry and high-quality dense light
curves, to usually noisy sparse data from sky surveys.

4 https://newton.spacedys.com/astdys/
5 In all cases reported here, the JTs rotate in the energetically low-
est state, namely about the shortest principal axis of the inertia tensor.
No obvious signs of significant tumbling are in fact expected for most
objects in our sample of large JTs, because the corresponding damping
timescale is typically smaller than a gigayear (e.g., Pravec et al. 2014).
The only exception might be JT 88229 as it has a rotation period of
∼1500 h and corresponding nutation damping timescale≫4 Gyr.
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Fig. 1. RMS values as a function of mean brightness for all available sparse datasets. The red curve represents a fit to the data defined by the
quadratic approximation (and constant parts) in Eq. (1).

To assign realistic weights to individual datasets, we esti-
mated their characteristic uncertainty by computing RMS resid-
uals for existing shape models in the DAMIT database. Our
procedure was as follows. First, we selected data for asteroids
with models in DAMIT for each sparse dataset. We used the
period and pole parameters as initial values for the optimization
and applied the light curve inversion method. For each model, we
computed the final RMS and assumed that this number is a proxy
for the uncertainty of the measurements. In Fig. 1, we plot RMS
values as a function of mean apparent brightness for all datasets.
There is a general trend of increasing RMS with increasing mag-
nitude, which naturally arises from the fact that fainter asteroids
have larger photometric uncertainties. An exception is Catalina
Sky Survey, for which brighter asteroids have also larger errors,
likely due to saturation. For each dataset, we fit a quadratic func-
tion for the RMS vs. magnitude m dependence with constant
parts outside the central interval:

RMS = A m2 + B m +C, (1)

where A, B, and C are free parameters and m is the brightness
in magnitudes. This function (red curve in Fig. 1) was then used

to compute formal errors of all datasets for all asteroids. The
magnitude was computed as a mean apparent brightness over
all data.

Although this approach has several caveats – DAMIT models
are not fully realistic, the brightness changes significantly for one
asteroid due to observing geometry, telescope photometric per-
formance can change during its operation, etc. – it serves well for
our purpose to assign operationally acceptable relative weights
to different datasets.

The relative weights wi of all available datasets for each
asteroid were then computed by

wi =
1

RMS2
i

, (2)

where RMSi is the formal error for each dataset.
Finally, we normalized wi such that

N∑
i=1

wi = N, (3)

where N is the number of light curves in the dataset. Each sparse
dataset is considered as a single light curve.
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Fig. 2. Periodogram in the rotation frequency domain for L5 JT
(1870) Glaukos. The black line connects the minima over the trial runs
sampling all local RMS values at a fixed rotation period but walking
through all other parameters of the model. The blue horizontal line indi-
cates the RMS threshold as defined by Eq. (4), while the orange vertical
line represents the best-fitting sidereal rotation period.

4. Spin and shape modeling of JTs

In total, we applied the convex inversion to 881 JTs with a
sufficient amount of photometric measurements. Following the
standard modeling approach (e.g., Hanuš et al. 2021), we con-
structed the periodogram for each asteroid (see an example in
Fig. 2). To reduce the CPU time requirements, whenever avail-
able, we searched the period only on a short interval near the
reported period in the LightCurve DataBase (LCDB, Warner
et al. 2009). We considered the reliability of the reported
values (through the validity flag) by selecting larger period
intervals for less reliable periods. For poor period estimates or
unknown periods, we searched for the period on an interval
of 2–5000 h.

We considered the period as unique if the best-fitting (i.e.,
global) solution with χ2

min is the only one within the threshold of

χ2
tr =

1 + 0.66

√
2
ν

 χ2
min, (4)

where ν is the number of degrees of freedom (number of
observations minus the number of free parameters). We consider
three parameters for the description of the rotation state, three
parameters for the scattering law, and 72 parameters for the
shape model (55 free parameters in total).

Next, we searched the pole orientation by scanning tens of
different values isotropically distributed on a sphere. We then
set the same condition for the unique solution as for the period
search (Eq. (4)). Due to the symmetry of the light curve inver-
sion problem (Kaasalainen & Lamberg 2006), two pole solutions
usually have similar fits – they have a similar shape model and
the pole-latitude, but their pole-longitude is ≃180◦ different.

4.1. Partial solutions and new rotation period estimates

For 31 JTs, we obtained more than two pole solutions within the
χ2 threshold set by Eq. (4). Although we are not able to report the
unique spin state and shape solution in these cases, the rotation

period is derived unambiguously. Moreover, for the majority of
these so-called partial solutions, the pole-ecliptic latitude is well
constrained (i.e., is similar within the multiple pole solutions),
and therefore, it is possible to decide whether the asteroid is a
prograde or a retrograde rotator (see Table B.1). Interestingly,
Table B.1 contains 11 JTs with no prior value of the rotation
period in the LCDB database (e.g., 6997, 15 398, 32 370). In
the remaining 20 cases, our sidereal rotation periods are con-
sistent with the LCDB rotation periods. Our values usually have
smaller uncertainty than the synodic periods from the LCDB,
often reaching fractions of a second.

4.2. New and improved shape and rotation state solutions

For 79 JTs, we derived their unique spin state and shape solutions
(Table B.2). We visually checked the periodograms and the fit to
the light curve data and rejected all suspicious solutions. We also
computed the principal moments of inertia (Dobrovolskis 1996)
for each shape model solution and dismissed those that were non-
physical. Finally, we also compared derived rotation periods with
those from the LCDB database and individually investigated all
inconsistent cases. We identified six such cases, but none of them
is significant, because their LCDB reliability flags indicate that
the synodic rotation period estimates could be inaccurate, and
thus still consistent with our new, not too different, values.

As there is an overlap between our solutions and their avail-
ability in DAMIT, we also verified their consistency. However,
these models are usually not fully independent as some of the
optical data are mutual. Despite that, the DAMIT solutions rep-
resent a useful reliability check of the methodology. The overlap
with the DAMIT database is for 13 JTs. Additionally, we consid-
ered the spin state solution for (884) Priamus of Stephens (2017)
here, although it has not yet been included in DAMIT. We list all
the previous spin state solutions in Table B.2.

Six solutions differ by more than 30 degrees in the pole
direction, while all the rotation periods are very similar. The
inconsistent solutions are for (659) Nestor, (911) Agamemnon,
(3391) Sinon, (4489) Dracius, (4709) Ennomos, and (15663)
Periphas. The previous solutions, all published in Ďurech et al.
(2019), are based on combined Gaia DR2 and Lowell data. As
especially the Lowell data have poor photometric accuracy, it
is not surprising that the revised models could be significantly
different considering the spin vector direction. Interestingly,
the solutions usually agree in ecliptic pole-latitude but differ
in pole-longitude. Our solutions are based on substantially
larger photometric datasets including, in some cases, dense light
curves, therefore we prefer those. Moreover, in some cases, we
either rejected one of the two previously reported pole solutions
or have the mirror solution (i.e., two poles) instead of a single
pole. The remaining 65 shape model solutions are new – we list
the physical properties of these JTs in Table B.2.

We provide optical data of asteroids with new and revised
shape model solutions that are not included in DAMIT in
Table B.5. New and revised solutions will be available in the
DAMIT database (optical light curves, light curve fits, rotation
state parameters, and shape models).

4.3. Assessing the model uncertainties by bootstrapping the
photometric datasets

In order to assess the pole and shape uncertainties quantitatively,
we performed additional modeling. For asteroids with shape and
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Fig. 3. Spin vector distribution of JTs (left panel) and of main belt asteroids with sizes >50 km for comparison (right panel). Spin vectors of
MBAs are taken from the DAMIT database. If two possible pole solutions exist, typically separated by ≃180◦ in longitude, we plot both. L4 and
L5 represent the two camps of JTs.

spin state solutions from Sect. 4.2, we bootstrapped their pho-
tometric datasets and applied the convex inversion. We created
the bootstrapped datasets for each asteroid by the following pro-
cedure: We randomly selected N dense light curves from the
original dense dataset of N light curves. Therefore, the boot-
strapped datasets could contain individual light curves multiple
times, while some have to be inevitably omitted. The sparse
datasets were bootstrapped internally: We randomly selected the
same number of measurements as in the original sparse dataset
from each sparse data source (i.e., ASAS-SN, ATLAS, etc.).
We computed the weights following the procedure described in
Sect. 3.

In the shape modeling, we used the nominal spin state solu-
tions as initial inputs and found the bootstrapped solutions near
these local minima. We repeated the modeling with ten dif-
ferent bootstrapped datasets. We summarize the mean values
and standard deviations of pole directions within the boot-
strapped solutions in Table B.4. This gives us a rough estimate
of the uncertainty – usually below 5 degrees, and quite rarely
>10 degrees. Moreover, we also constructed the cumulative
obliquity distributions for each bootstrapped dataset to assess its
stability later in Sect. 4.5.

4.4. Stellar occultations

For eight JTs listed in Tables B.2 and B.3, there were success-
fully observed stellar occultations with a sufficient number of
chords that enabled us to scale the shape models and in some
cases also to reject one of the two possible pole solutions.
The stellar occultations were assessed through the Occult soft-
ware6. A thorough description of the occultation data can be
found in Herald et al. (2020). For comparing the occultations
with our shape models, we used the same approach as Ďurech
et al. (2011). We computed the orientation of the shape model
at the time of the occultation, projected it to the fundamen-
tal plane, and fit the asteroid’s size to get the best agreement
between the model’s silhouette and observed chords. This way,
we scaled models of (588) Achilles (Fig. A.2), (884) Pria-
mus (Fig. A.3), (911) Agamemnon (Fig. A.4), (1437) Diomedes
(Fig. A.5), (1867) Deiphobus (Fig. A.6), (2207) Antenor

6 http://www.lunar-occultations.com/iota/occult4.htm

(Fig. A.7), (4709) Ennomos (Fig. A.8), and (31344) Agathon
(Fig. A.9). If one of the two possible pole solutions gave a
significantly better agreement with the occultation, we rejected
the second pole – this concerns JTs Priamus, Diomedes, and
Agathon. We indicate these cases in Table B.2.

For Deiphobus the agreement between the occultation
and the shape projection was suboptimal. Therefore, we also
reconstructed the shape model by a different approach – by
the All-Data Asteroid Modelling (ADAM) inversion technique
(Viikinkoski et al. 2015; Viikinkoski 2016). ADAM allows using
the stellar occultation for the shape reconstruction contrary to
the convex inversion where the shape is scaled in size only. The
ADAM shape model of Deiphobus agrees better with the occulta-
tion and provides a more realistic size estimate. The alternative
ADAM model is listed in Table B.2.

4.5. Spin states of JTs

Our analysis is based on full shape and spin state solutions
of 90 JTs – 79 from Sect. 4.2 and 11 solutions adopted from
DAMIT (Table B.3), and partial models of 31 JTs (Sect. 4.1). We
identified 49 members of the L4 cloud and 72 of the L5 cloud.
In what follows, we focus on the analysis of the rotation pole
distribution, as this is a new result in this paper. We omit to
comment on the rotation rate distribution. This is because previ-
ous works, such as Szabó et al. (2016), Ryan et al. (2017), Kalup
et al. (2021), Chang et al. (2021) covered this issue with even
more data.

In the left panel of Fig. 3, we show the pole directions for JTs.
The pole distribution is consistent with being grossly isotropic,
similar to the pole distribution among the large (D > 50 km)
main-belt asteroids (for models in DAMIT) that is shown in the
right panel of Fig. 3 for comparison. Both populations consist of
bodies that are large enough not to be significantly affected by
the YORP effect, so the pole directions should primarily reflect
the initial distribution in the source region and possibly modi-
fication due to the collision history (if important enough). The
nonuniform distribution of poles caused by the YORP effect is
evident only for main-belt asteroids with D < 30 km (Hanuš
et al. 2011). Unfortunately, we do not have spin state solutions for
such small (D < 30 km) JTs. So far, the first tentative evidence
of the YORP effect acting on JTs < 10–20 km was reported by
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Fig. 4. Spin obliquities and pole ecliptic latitudes within various populations. Left panel: cumulative distribution of obliquities for JTs (orange)
and of planetesimals obtained in our simulations of the streaming instability (SI) model (blue). The thick orange line corresponds to the nominal
spin state solutions, while the thin orange lines represent the spin states based on the bootstrapped photometric datasets. The spins in SI are
predominantly prograde with ≃75% having obliquity ε < 90◦. We also plot the cumulative distributions for randomly oriented spins (red), and
large MBAs (green, spin states adopted from DAMIT). Right panel: same but now for the ecliptic latitude of the rotational pole instead of the spin
obliquity.

Chang et al. (2021) – smaller JTs have a lower limit of the rota-
tion period near 4 h than the previously published result of 5 h
found for larger JTs. There is no obvious difference between the
pole orientations within the L4 and L5 clouds.

Deciding the sense of rotation with respect to the orbital
plane requires the knowledge of the spin obliquity ε. We com-
puted the obliquity for cases with the full spin solutions. We
consider the sense of rotation to be inconclusive if the obliq-
uity is between 80◦ and 100◦, while obliquity <80◦ indicates
a prograde rotator and obliquity >100◦ a retrograde rotator in
our simple approach. We find there are more prograde rotators
than retrograde ones in our sample, namely 49 versus 33. This
hints at a factor of ≃1.5 between a number of prograde and ret-
rograde populations, or ≃60% abundance of prograde rotators in
the overall JT population. We shall operationally work with this
result while admitting that the hypothesis of a similar number
of prograde and retrograde rotators among JTs may be valid at
≃10% level due to the small size of the sample. For instance, if
the sample is doubled, and the ratio of the prograde vs retrograde
solutions remains ≃1.5, the room for the isotropy would shrink to
only about 1.5% probability. This is a large motivation for deter-
mining more spin models among JTs. By splitting the sample at
obliquity equal to 90◦, we have 54 prograde vs. 36 retrograde JTs,
thus a similar abundance of prograde rotators. Due to a larger
sample, the significance of the isotropy of the spin poles of JTs
decreases to the ≃7% level. The excess in prograde rotators is
also present considering the two clouds: there are 22 prograde
and 18 retrograde rotators within the L4 cloud (55% vs. 45%),
and 32 prograde and 17 retrograde rotators within the L5 cloud
(65% vs. 35%).

In Fig. 4, we show the cumulative obliquity distribution of
JTs, which provides more complete information than just the
simple ratio between the number of prograde and retrograde
rotators. Additionally, we also included in Fig. 4 the obliquity
distributions for randomly oriented spins, and for the population
of MBAs larger than 100 km, which spins were adopted from
DAMIT. Clearly, none of the populations have similar obliquity
distributions and none are consistent with randomly distributed
spins. In addition, the sample of all MBAs with known spins (not
shown in the figures) is dominated by objects in the size range

of 10–30 km, for which the YORP effect is the main driver shap-
ing the spin vector distribution – there is a lack of spin vectors
with obliquities ∼90◦ and about the same number of prograde
and retrograde rotators (Hanuš et al. 2011). The obliquities of
MBAs larger than 100 km are not affected by YORP and their
initial spin distribution was modified by collisional and orbital
evolution. We observe a significant excess of prograde rotators
(∼60%, Fig. 4). JTs have a similar excess of prograde rotators
of ∼60% but contain a larger fraction of objects with obliqui-
ties 0◦ to 50◦. The cumulative obliquity distributions based on
bootstrapped datasets are qualitatively similar to the nominal dis-
tribution, therefore, our conclusions are not strongly dependent
on the pole uncertainties.

In what follows (Sects. 5 and 6) we aim at understanding
if the slight asymmetry toward the prograde sense of rotation
among JTs and the overall obliquity distribution is consistent
with the expectations within the JTs capture model (Sect. 1). At
this moment, we do not extend our analysis to alternative models
of the JTs’ origin.

4.6. Shape models

We also analyze the shape models of JTs and make a comparison
with the population of MBAs. The convex shape models can be
best characterized by the ratios of dimensions (a′, b′, c′) along
the main axes. We compute the relative dimensions (shape mod-
els are not scaled in size) by the “overall dimensions” method
of Torppa et al. (2008) and normalize them such that c′ = 1.
We note that the c′ dimension is usually the least accurate. In
Fig. 5, we plot the a′/b′ vs. b′/c′ axis ratios of JTs, and of
large MBAs (D > 30 km in this case), and the dependence of
a′/b′ ratio on the size D. We used the shape models of MBAs
available in DAMIT and included only those having at least ten
optical light curves, thus the most realistic solutions. According
to the two-sample Kolmogorov-Smirnov test, the a′/b′ distribu-
tions are different (p-value = 10−6), while the b′/c′ distributions
are similar (p-value = 0.14). We note that the two-sample K–S
test does not depend on the binning of the data.

The bootstrapping described in Sect. 4.3 simultaneously pro-
vides shape models that we used for assessing the uncertainties
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Fig. 5. Shape properties within JTs and large MBAs. Left panel: the a′/b′ vs. b′/c′ axis ratios of JTs, and of large MBAs (D > 30 km). Right panel:
the a′/b′ ratio as a function of diameter D for the same populations.

of the ratios of dimensions along the main axes. For each aster-
oid, we obtained ten bootstrapped shape models for each pole
solution. Out of 79 asteroids, only seven have relative uncertain-
ties in a′ larger than 20% and 22 larger than 10%. Similarly, only
four asteroids have relative uncertainties in b′ larger than 20%
and 24 larger than 10%. This means that the JT population has
a rather stable distribution of a′/b′ and b′/c′ axis ratios consid-
ering the uncertainties in the dimensions, and thus the statistical
tests above should be statistically meaningful.

4.7. Assessing the systematic uncertainties by using
assumed shapes

As we aim above to compare the obliquity and axial ratio dis-
tributions in a quantitative manner, we also need to understand
the possible effects of systematic uncertainties in the modeling
assumptions on these distributions. In Sect. 4.3, we test the sen-
sitivity of the shape models and spin states on the photometric
datasets (by bootstrapping the optical light curves), but under
the same model assumptions. Therefore, these uncertainties rep-
resent only a lower bound of the total uncertainties. We admit
that fully accessing the total uncertainties in the shape models
and rotation state parameters requires a robust synthetic study,
where various sources of systematic errors should be investi-
gated (noise in data, observing geometries, shapes, spin-state
distributions, amount of data, modeling assumptions, inversion
method, etc.). This is largely beyond the scope of this work and
we leave it for future efforts. However, some selection effects
were already quantified in our previous study through a small-
scale synthetic study (Hanuš et al. 2011) and the mathematical
stability of the convex inversion method for well-formed data
sets is well manifested in the literature (e.g., Kaasalainen &
Torppa 2001; Kaasalainen et al. 2001).

Here, we decided to assess whether the original shape itself
affects the pole-latitude distribution and how well the axis ratios
are preserved. Therefore, we performed the following exercise.
We assumed that each asteroid in our final sample of solutions
has an assumed fixed-shape model – we selected the noncon-
vex shape models of asteroids (433) Eros (PDS, 433 Eros Plate
Model MSI 1708) and (3) Juno (Viikinkoski et al. 2015). For
each asteroid, we used its derived spin state (Table B.2) and the
assumed “fake” shape model to generate the new set of opti-
cal light curves corresponding to the original epochs. We added
noise to each light curve according to its original rms. Then, we

derived the spin state and the shape model based on the gener-
ated light curve dataset. Finally, we constructed in Fig. A.1 the
cumulative obliquity distributions and the axis ratios for each
“fake-shape” dataset to assess their stability.

The shapes of Eros and Juno represent substantially differ-
ent bodies. While Eros is highly elongated and largely concave,
Juno is rather round without large concavities. Thus, our exercise
covers two end members of the asteroid population. However,
we note that JTs should have shapes qualitatively more simi-
lar to Juno than Eros. In both cases, the cumulative distribution
of obliquities is similar to that of the JTs from Sect. 4.5. This
means that the spin vectors were preserved almost independently
on the assumed shape model. Only, in the case of Juno, fewer
unique solutions were derived, likely because the original mod-
els were more elongated, thus with larger imprints in the light
curves. This smaller Juno sample still has a similar cumulative
obliquity distribution to that of JTs, thus the missing solutions
do not have preferential obliquities. The axis ratios of Juno and
Eros synthetic JT populations are well preserved, and most of the
solutions cluster within 10% in a′/b′ and b′/c′ (Fig. A.1). Such
uncertainties are comparable to those assessed by the bootstrap-
ping of the optical data in Sect. 4.3. We note that the dimensions
of the original concave shape of Eros lie outside the Eros JTs
cluster having higher b′/c′ and borderline a′/b′. The main rea-
sons are the peculiar shape of Eros and its qualitative difference
from the convex approximation. The main takeaway from this
analysis is that (i) the shape dimensions are relatively well pre-
served, and (ii) there is no indication of overestimated a′/b′
ratios (the population of JTs has larger a′/b′ ratios than the larger
MBAs (D > 30 km), probably not due to the above-analyzed
systematic uncertainty).

5. Spin vectors of planetesimals in the streaming
instability model

In this Section, we return to the issue of the possible asymme-
try between a prograde and retrograde sense of JTs rotation. We
first determine what obliquity distribution is expected among
the planetesimals born in the trans-Neptunian disk prior to their
capture into the JT population. We adopt the currently lead-
ing model of planetesimal formation mechanism, namely the
streaming instability (SI) in a cold proto-planetary disk.

Streaming instability is a mechanism to aerodynami-
cally concentrate small particles in a proto-planetary disk
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(Youdin & Goodman 2005). Here we analyze the results of 3D
simulations of the streaming instability reported in Nesvorný
et al. (2019, 2021) and Li et al. (2019). The simulations accounted
for the hydrodynamic flow of gas, aerodynamic forces on par-
ticles, backreaction of particles on the gas flow, and particle
self-gravity. They were performed with the ATHENA code (Bai
& Stone 2010). The obliquity distribution of particle clumps in
the ATHENA run A12 was reported in Nesvorný et al. (2019). It
shows an 80% preference for prograde rotation, which matches
the observed distribution of binaries in the Kuiper belt. We per-
formed additional integrations for selected clumps, where we fol-
lowed their gravitational collapse into individual planetesimals,
to understand the implications for the spin states of JTs.

Gravitational collapse of particle clouds was followed with a
modified version of the N-body cosmological code PKDGRAV
(Stadel 2001), described in Richardson et al. (2000). PKDGRAV
is a scalable, parallel tree code that is the fastest code available
to us for the proposed simulations. A unique feature of the code
is the ability to rapidly detect and realistically treat collisions
between particles. The ATHENA simulations were used to set up
the initial conditions for PKDGRAV. In total, we performed sim-
ulations for 10 representative clumps from A12 (see Nesvorný
et al. 2021). Five simulations were completed in each case, where
we used slightly modified initial conditions to understand the
statistical variability of the results.

All planetesimals with diameters D > 25 km that formed in
the PKDGRAV simulations were identified, 103 bodies in total.
For each of them, we computed the orientation of the spin vec-
tor relative to the reference frame. Since the reference frame of
PKDGRAV simulations is set such that the X–Y plane is per-
pendicular to the initial angular momentum of the cloud, the
colatitude of the spin vector gives us the obliquity distribution of
planetesimals relative to the clump’s initial angular momentum
vector. Finally, we convolved the two distributions to generate
predictions for the obliquity distribution of planetesimals with
respect to the Solar System plane. Figure 4 shows the result.

There is a notable ≃75% preference for prograde spin, which
is similar to predictions of the streaming instability for the orbital
inclinations of Kuiper belt binaries (compare with Fig. 3 in
Nesvorný et al. 2019). Here, the preference is slightly weaker,
75% vs. 80%, probably because individual objects experienced
stochastic growth during gravitational collapse, smearing the
initially stronger preference for prograde rotation (binaries pre-
served it better). Indeed, we see in the PKDGRAV simulation
that the spin vectors of individual objects can significantly
change during the collapse. For comparison, from the analysis of
light curves in this work, we find that JTs show a weaker, ≃60%
preference for prograde rotation (Sect. 4.5). There are several
options to reconcile these results. For example, as JTs evolved
collisionally prior to their capture (e.g., Nesvorný et al. 2018),
the initial distribution of obliquities could have been partially
randomized. We do not perform any collisional simulations in
this paper. The results of collisional simulations depend on many
unknown parameters, such as the overall excitation of orbits
in the planetesimal disk, momentum transfer in subcatastrophic
collisions, or the lifetime of the disk prior to the onset of plan-
etary instability. We thus defer quantitative modeling of these
processes to future work.

Apart from the general preference for prograde spins, our
numerical simulations of the streaming instability also predict
the distribution of planetesimal obliquities that can be compared
to the observed obliquity distribution of JTs (Fig. 4). There are
some significant differences between the two distributions. The
observed obliquity distribution is, in general, wider than the

simulated one. It closely follows the model distribution for ε <
50◦ and starts diverging from it for ε > 50◦. We present a more
quantitative comparison in Sect. 7.

For completeness, we also analyzed the distribution of the
ecliptic latitude β of the pole for the model and the different
observed populations in the right panel of Fig. 4. In the model
case, the transformation is trivial: because of the initial cold
planetesimal disk, the obliquity is simply 90◦ − β. However,
the transformation is not so simple for MBAs and JTs. This is
because the orbital inclinations extend to large values up to ≃40◦.
For JTs, the inclinations were excited prior to and during their
capture by gravitational perturbations from planets (and possibly
other massive objects in the planetesimal disk). It is not exactly
known whether, or to what degree, the spins of the captured JTs
followed this excitation. So considering both the obliquity and
the ecliptic latitude distributions we cover both extreme possibil-
ities: (i) a complete binding of the spins to the orbits during the
excitation process, or (ii) spins not being affected by processes
that excited the orbital planes. While understanding this issue in
detail may again require a complex model, data shown in Fig. 4
luckily manifest that conclusions are the same, independently of
whether obliquity or the pole latitude is used. In order to bring
quantitative evidence, we tested the corresponding obliquity and
ecliptic latitude samples (i.e., for JTs, and DAMIT D > 100 km)
by the standard two-sample Kolmogorov-Smirnov test. In both
cases, the samples are consistent with being drawn from the same
distribution. For instance, the K-S test for the two JTs samples
(i.e., obliquities vs. ecliptic latitudes) gives p-value = 0.09.

6. Post-capture spin evolution

In this section, we consider what happens to the Trojan spin
state during the long period of time after they have been cap-
tured in the coorbital state with Jupiter. We consider dynamical,
rather than collisional effects in this section. This is because we
assume that the collisional activity among Trojan clouds after
the capture was dwarfed by a much more intense period before
capture. Given the commonly accepted point of view, the cap-
ture happened during the early evolution of the Solar System
(possibly 4.4–4.5 Gyr ago or so; e.g., Nesvorný 2018), when
giant planets underwent a chaotic reconfiguration terminated by
Jupiter’s inward jump to near its current orbit (e.g., Nesvorný
et al. 2013). Planetesimals roaming in the planet-crossing zone
that happened to be suitably situated with respect to the Jupiter
orbit at that moment formed the early Trojan population. The
implication of this model is the marginal stability of a fraction
of the Trojan population such that over eons that followed about
23% of them leaked away (e.g., Holt et al. 2020), leaving even
some of the currently observed Trojans on unstable orbits ready
to escape from the population in the close future (Sect. 6.3). Even
some of the Trojans residing currently stable orbits (that will stay
in the population for another gigayear), might have underwent
orbital evolution since their origin due to subtle chaoticity in
their orbital phase space. As a result, it is not our aim to describe
in detail the past gigayear-lasting evolution of spin state even for
our limited sample of 90 Trojans, for which we know it today, as
this is a task that is too difficult.

Instead, we probe the shorter-term evolution of the Trojan
spin state and consider it an operational proxy of what hap-
pens on longer timescales. In particular, we propagate, using
the model described in Sect. 6.1, the spin states of our sample
of Trojans for 50 Myr forward in time. Note this is informa-
tion equivalent to the propagation backward in time. Given the
main arguments in this paper (Sect. 4.5), we are principally
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interested to know whether there is a substantial evolutionary
flow of Trojan spins between the prograde- and retrograde-
rotating groups. Finding there is little of such interchange on
the monitored 50 Myr time interval, we dare to extrapolate the
conclusion to gigayear-long evolution.

6.1. Dynamical model

Assume the body rotates about the axis of the largest inertia ten-
sor. If no torques are applied, the rotational angular momentum
L is conserved. This implies that both (i) the angular rotation
rate ω, and (ii) the unit vector s of the rotation pole in the iner-
tial frame are also constant. However, if we aim to know what
happens to the Trojan rotation state over a long period of time,
we need to include relevant torques of which the most impor-
tant are due to the gravitational effects of the Sun and planets
(the radiation-related YORP torques would have been important
only for timespan exceeding ≃5 Gyr for D < 40 km Trojans,
e.g., Vokrouhlický et al. 2015). Each of the perturbing bodies
may be represented by a point source of mass M and its grav-
itational field expanded in the local frame of the Trojan to the
quadrupole level. Assuming the origin of the local frame coin-
cides with the center-of-mass of the Trojan, the rotation-averaged
gravitational torques may be expressed in simple terms as (e.g.,
Colombo 1966; Bertotti et al. 2003, Chap. 4)

T = −
3GM

r5

[
C −

1
2

(A + B)
]

(s · r) (s × r), (5)

where G is the gravitational constant, r position vector of the
Trojan with respect to the source (r = |r|), and (A ≤ B ≤ C) are
the principal moments of the inertia tensor. Because L = Cω s
in the principal axis rotation state, the Euler equation dL/dt = T
implies that ω is conserved in this approximation. However the
pole direction s evolves according to

ds
dt
= −

3GM
r5

∆

ω
(s · r) (s × r), (6)

where ∆ =
[
C − 1

2 (A + B)
]
/C is the dynamical flattening. For

nearly spherical objects ∆ is very small, and it reaches maximum
values near to 0.5 for highly irregular-shaped bodies. Contribu-
tions from different massive bodies in the Solar System linearly
superpose on the righthand side of Eq. (6).

In our most complete simulations, we included the Sun
and Jupiter as sources of the gravitational torques. In this
approach, we numerically integrated Eq. (6) using a simple
Euler scheme and a short timestep of 3 days. The value of
the rotation frequency ω was obtained from our solution of
the rotation period, and the dynamical flattening ∆ from the
nominal shape of the body and assumption of a homogeneous
density distribution (see, e.g., Dobrovolskis 1996). We embed-
ded this unit into a general-purpose orbit-propagation package
swift_rmvs4, which provided the position vectors r for each of
the sources (and used the same timestep of 3 days for the orbit
integration). All planets, and the Sun, were propagated using
swift_rmvs47, together with our sample of Trojans for which
rotation states were inferred in Sect. 4. The planetary and Trojan
heliocentric position vectors were integrated in a global refer-
ence frame defined by the invariable plane of the Solar System.
For that reason, we also transformed Trojan pole directions s into
the same system at the beginning of the integration. The corre-
sponding tilt is, however, very small, as the ecliptic plane has
7 http://www.boulder.swri.edu/~hal/swift.html

an inclination of only ≃1.5◦ to the invariable plane. Therefore
the pole latitudes differed in the two systems at maximum by
this value. We performed the simulations forward in time over
50 Myr interval, over which most of the orbits were stable (see
though Sect. 6.3 for more comments).

In our first set of integrations, we included the gravitational
torque due to Jupiter’s gravity on the righthand side of Eq. (6)
for the sake of completeness and also for its special status with
respect to the Trojan clouds. However, we found that its effect
is minimal over the timescale of 50 Myr we considered (a result
that likely would not change even over a longer timescale). This
is because the Solar torque is much more significant owing to
its much larger mass (in spite of the fact that some Trojans with
large libration amplitude in our sample may approach Jupiter at
a distance that is slightly more than half of the Solar distance).
We thus find that adequate results can be obtained when consid-
ering the Solar gravitational torque only on the righthand side of
Eq. (6). This model has further important advantages.

First, we observe that the secular changes of s have periods
comparable with that of the precession of the Trojan orbital
plane rather than a much shorter revolution period about the
Sun. It is thus possible, and convenient, to further average
the torque (Eq. (5)) over the revolution cycle about the Sun.
Assuming osculating elliptical orbit, this may be performed
analytically using〈rr

r5

〉
=

1
2b3 (E − nn), (7)

where b = a
√

1 − e2 is the semiminor axis of the elliptic orbit (a
and e being the respective semimajor axis and eccentricity), E
is the unitary 3 × 3 matrix and n is the unit vector normal to the
osculating orbital plane in the direction of the orbital angular
momentum. Therefore, nT = (sin I sinΩ,− sin I cosΩ, cos I),
where I is the orbit inclination to the reference plane and Ω is
the longitude of the node. As a result, Eq. (6) now takes the
form (e.g., Colombo 1966)

ds
dt
= −α (s · n) (s × n), (8)

where

α =
3
2

GM
b3

∆

ω
(9)

is the precession constant. The fundamental difference between
Eqs. (6) and (8) is that none of the parameters on the righthand
side of the latter changes on the timescale of Trojan’s orbital
revolution about the Sun (neglecting very small short-period
changes in the semiminor axis b in the definition of the pre-
cession constant α). Therefore, Eq. (8) may be numerically
integrated with a much larger timestep, obtaining results
quite more efficiently. In our simulations, we used a 50 yr
timestep, instead of the 3 day timestep needed for integration
of Eq. (6). Additionally, Breiter et al. (2005) developed an effi-
cient symplectic scheme for the propagation of Eq. (8), which
conveniently conserves its first integrals. We implemented their
LP2 scheme. The knowledge of the orbital evolution is still
needed, as the normal vector n changes its direction in the iner-
tial space due to the orbit precession and inclination variations
(that is, both I andΩ are time-dependent due to planetary pertur-
bations). In order to fully describe both, we still use the orbital
integration by swift_rmvs4 package and include the Trojan
spin integrator of Eq. (8) as a separate subunit of the code.
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Second, a great advantage of using the second model
described by Eq. (8) consists of the fact that its solutions have
been thoroughly studied since Colombo (1966). This past and
well-known analysis provides a key insight into why some of the
Trojan pole solutions exhibit only very small variations of the
pole latitude, while in other cases large variations of the latitude
are possible. Importantly, while many perturbations, reflecting
planetary orbits and their own evolution, participate in the time
evolution of Trojan orbital n vector, not all are equally promi-
nent. In fact, the evolution of n is nearly always dominated by a
contribution from a single, proper term. In this case, the inclina-
tion I is constant and the longitude of the node exhibits a steady
precession with the proper frequency s (thus Ω = s t + Ω0). In
this simplified model, called the Colombo top (e.g., Colombo
1966; Henrard & Murigande 1987), the variety of solutions of
Eq. (8) depends on three parameters: (i) the two frequencies α
and s, and (ii) the orbit inclination I. The complexity stems from
the possibility that α and s enter in a resonance. As a result, the
flow of s on a unit sphere has two distinct regimes according to
the ratio κ = |α/s| (our notation adopted here, recalling that α is
positive and s negative, may differ from the signature in other
references). When, κ < κ⋆, where κ⋆ =

(
sin2/3 I + cos2/3 I

)3/2
,

s exhibits a simple circulation about two fixed points called
Cassini state 2 and 3. In the limit of very small κ value, these
stationary points have obliquity of I and 90◦ − I. The spin vector
s thus circulates about the north or south poles of the invari-
able frame in the inertial system, and the rotation pole latitude
has only small variations. A more complex regime onsets when
κ > κ⋆ (note that κ⋆ ranges between the value 1 at very small
inclination and reaches a maximum of 2 when I = 45◦). In this
situation, the flow of s navigates between four fixed points, called
Cassini state 1 to 4. Cassini states 2 and 4 are stable and unstable
stationary points of a resonant zone. The appearance of this zone
triggers large obliquity oscillations, which are then reflected
by large oscillations of the rotation pole latitude. Transitions
between the prograde and retrograde rotation regimes are in prin-
ciple possible. Mathematical details of the Colombo top problem
may be found in a number of publications (e.g., Colombo 1966;
Henrard & Murigande 1987; Haponiak et al. 2020).

We need to decide on which of the two regimes is to be
expected more typical for Trojan spin evolution. For small eccen-
tricities, we may adopt b ≃ a ≃ 5.2 au in the Trojan region, and
thus α ≃ 9.4∆ (P/6 h) arcsec yr−1 (see Eq. (9)). Additionally, the
population of large Trojans we are interested in has rather regular
shapes, typically with ∆ ≃ 0.1–0.2. As a result, the precession
constant values are typically ∼arcsec yr−1 unless the rotation
period P is long (several tens of hours or so). In the same time,
the proper frequencies s have values typically in the range −5
to −30 arcsec yr−1, and only exceptionally have a value smaller
(e.g., Milani 1993). As a result, the situation we should encounter
most often among Trojans is the limit of very small κ, implying
thus only small variations of the rotation pole latitude. Excep-
tions are to be expected when the rotation period P is very long,
and/or proper frequency s is anomalously small.

Results from our simulations confirm these conclusions.
Tables 1 and 2 provide results from simulations where we prop-
agated all our pole solutions from Sect. 4 for 50 Myr interval
to the future. We used the most complete torque model, includ-
ing both the Sun and the Jupiter effects in Eq. (6), although the
results from the secular model using Eq. (8) are nearly identi-
cal. We were mainly interested in the behavior of the rotation
pole latitude, as this parameter helps us classify Trojans into
prograde- and retrograde-rotating groups. The columns b0 give

the initial latitude in the invariable-frame reference system. For
each body we propagate both pole solutions P1 and P2; only in
cases, for which the pole solution is unique, we have just the
P1 data. The columns denoted bmin and bmax give minimum and
maximum latitude values attained over the monitored 50 Myr
time interval. In most of the cases, the latitude variations are
very small, reflecting a large separation between α and s fre-
quencies. The rotation of these bodies is well represented by the
κ ≪ κ⋆ solutions of the Colombo top. Importantly, this majority
of Trojans thus remain safely within their group, either prograde
or retrograde rotators, and do not confuse our conclusions by
possible transitions between them. As anticipated, in a few cases
we observe a larger range of variations in the pole latitude. Here,
κ ≃ κ⋆ or even κ > κ⋆ for either of the two reasons mentioned
above. The pole solution may still remain in its category, but
in exceptional cases, it may even temporarily transition between
prograde- and retrograde-rotating categories (in Sect. 6.2, we
illustrate three of such cases in some detail). The overall balance
of this flow is excepted to be directed toward retrograde states,
helping slightly to solve the difference between the observed
JT spin states and the modeled original spins (Sect. 5). This is
because the Cassini resonance is predominantly located in the
prograde rotation zone.

6.2. Trojans with large variations of pole latitude

In this section, we illustrate reasons for large latitude varia-
tions of the rotation pole for three exceptional Trojans. We
start with the pole solution of (1867) Deiphobus, the L5 cloud
member, for which we predict the largest effect in this group
(see Table 2). In this case, the orbit has a proper inclination
I ≃ 28.3◦ and proper frequency s ≃ −6.23 arcsec yr−1. Our esti-
mated ∆ ≃ 0.246 from the shape model and rotation period
P ≃ 59.18 h provide α ≃ 21.86 arcsec yr−1. As a result, we have
κ ≃ 3.509 and κ⋆ ≃ 1.886. Thus κ > κ⋆, principally due to the
very slow rotation of Deiphobus and the resonant situation with
four Cassini states apply. The obliquity ε2 of the resonant cen-
ter, the Cassini state 2, is among the solutions of the equation
of κ sin 2ε2 = 2 sin(ε2 − I) (e.g., Colombo 1966). Interestingly,
this quartic equation may be solved analytically (e.g., Haponiak
et al. 2020), providing ε2 ≃ 77.2◦, quite larger than the proper
inclination value. Because of the large proper inclination I and
proximity of κ to κ⋆ the resonant zone occupies a large portion
of the phase space: it spans from ≃28.9◦ to ≃117.1◦ in obliq-
uity along the ϕp = 0◦ section. Finally, the present-date obliquity
value of our unique pole for Deiphobus is ≃37◦, not too close
to the Cassini state 2. This implies that while circulating about
the Cassini state 2, Deiphobus pole obliquity will exhibit large
oscillations and these will be reflected in large variations of the
pole latitude in the inertial frame.

Data shown on Fig. 6 confirm these conclusions. While
the estimates mentioned above used the simplified Colombo
top model, the solution shown here is obtained by full-fledged
numerical simulations. Its closeness to what the Colombo model
predicts justifies its validity. In particular, the top panel shows
osculating obliquity as a function of time over 2 Myr initial seg-
ment of our simulation. The large-amplitude oscillation with a
period of ≃243 kyr is the projected circulation about the Cassini
state 2. To see the effect more fully, we also transformed the s
evolution into the variables defined in the proper-term orbital
frame (that is, the frame having the reference plane inclined
by the proper orbital inclination value and precessing in the
inertial frame with exactly s frequency): (i) the proper
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Table 1. Limits of oscillations of the rotation pole latitude for L4 Trojans.

Body b0 bmin bmax b0 bmin bmax s

588 Achilles –6.42 –6.50 –5.71 –11.03
624 Hektor –23.91 –25.18 –20.68 –12.89
659 Nestor –73.09 –76.37 –71.91 –16.91
911 Agamemnon 34.57 26.09 38.12 –8.58
1143 Odysseus –53.05 –53.68 –52.42 –50.16 –50.84 –49.61 –10.91
1404 Ajax 42.16 28.54 50.36 –14.77
1437 Diomedes 3.81 3.16 7.96 13.42 12.24 21.84 –20.14
1868 Thersites 43.78 35.91 44.62 –20.37
2797 Teucer –30.30 –30.73 –26.28 –2.74 –3.49 –2.32 –17.00
2920 Automedon –4.89 –5.30 –3.76 –12.71
3391 Sinon 88.03 72.82 89.99 –14.35
3564 Talthybius –58.20 –61.09 –46.17 –69.12 –88.24 –66.07 –9.64
3709 Polypoites 0.11 –0.55 1.69 24.84 23.57 37.32 –7.15
4063 Euforbo 75.52 60.07 80.88 40.77 33.83 41.70 –8.49
4068 Menestheus –55.89 –57.40 –48.21 –23.90 –28.27 –23.15 –13.46
4086 Podalirius 17.27 14.42 19.58 42.39 38.34 58.97 –15.15
4489 – 28.10 25.58 33.41 11.03 9.46 18.26 –13.66
4543 Phoinix –55.43 –60.03 –51.80 –43.87 –49.13 –41.47 –22.51
4834 Thoas 33.56 26.18 89.99 –4.58
4836 Medon –57.41 –60.43 –49.96 –23.83 –28.57 –22.07 –10.47
5027 Androgeos 32.68 23.01 48.21 33.57 21.71 48.52 –7.44
5209 – 76.50 72.56 80.86 65.61 57.94 66.54 –20.19
5244 Amphilochos 78.30 77.97 85.94 64.05 52.04 64.46 –11.39
5283 Pyrrhus –10.89 –11.08 –9.50 20.89 20.39 25.52 –8.35
5285 Krethon –74.04 –84.64 –67.58 –14.46
5436 Eumelos 21.57 18.56 32.45 11.31 9.32 14.10 –7.89
9694 Lycomedes 53.30 52.23 54.91 53.90 52.55 55.03 –29.94
11429 Demodokus –3.26 –6.10 –2.79 –37.48 –39.65 –24.50 –16.34
13060 – –26.76 –89.26 –22.21 –9.76
13229 Echion –62.36 –63.27 –62.00 –83.73 –84.19 –82.38 –18.72
13372 – 42.88 33.27 69.40 47.46 32.09 76.28 –9.53
14268 – –38.70 –39.75 –37.68 –29.54 –30.41 –28.79 –14.90
15436 – 2.57 2.25 4.30 –4.50
15527 – 86.94 80.06 90.00 73.63 61.47 74.52 –12.34
15663 Periphas –19.85 –62.46 –17.68 –1.61
18062 – 20.36 14.95 21.24 –8.86
18263 Anchialos –79.62 –84.32 –79.22 –47.11 –50.96 –46.40 –21.13
23135 Pheidas 31.78 31.36 34.87 –4.76 –5.01 –4.29 –15.81
24485 – –77.78 –79.86 –69.16 –66.96 –76.40 –65.37 –11.69
25911 – 28.21 27.82 35.38 –12.14

Notes. The first two columns provide the denomination of the Trojan. The next three columns apply to the first pole solution (P1), followed by three
columns for the second pole solution (P2); if the pole solution is unique, the P2 columns are empty. We note that b0 is the nominal pole latitude
of the current epoch in the invariable frame of the Solar System. Furthermore, bmin and bmax are the minimum and maximum latitude values in the
next 50 Myr from our secular model. The last column gives the proper frequency s (in arcsec per year) of the orbital plane precession from AstDyS.

obliquity εp, namely the angle between s and the z-axis of the
proper frame, and (ii) the proper longitude ϕp, namely the angle
between the s projected onto the reference proper plane and the
x-axis rotated 90◦ away from the proper node. The Cassini state 2
is shown by the red dot at ϕp = 0◦, and the gray curves are exact
solutions of the idealized Colombo top model (e.g., Haponiak
et al. 2020). The true s evolution in these variables follow very
closely the neighboring gray lines justifying the approximate
validity of the Colombo model. The takeaway message is that the
large obliquity oscillations, between ≃35◦ and ≃113◦, are indeed
triggered by oscillations about the Cassini state 2, which itself is
tilted to a large ε2 value8.

8 The confinement of the P1 pole solution for Deiphobus in the s-
type Cassini resonance is reminiscent of the spin state of (433) Eros
(Vokrouhlický et al. 2005).

The resonant zone about the Cassini state 2 is predominantly
located in the prograde rotation zone, but its presence may con-
siderably affect solutions in the retrograde rotation zone. An
example of this behavior is the L4 member (15663) Periphas (see
Table 1). In this case, our solution yields ∆ ≃ 0.233 and the rota-
tion period P ≃ 9.92 h, not suspiciously large. Together with
other orbital parameters, they provide a rather small value of
the precession constant α ≃ 3.54 arcsec yr−1. However, the really
small value of the orbital precession frequency (partly due to
large inclination value I ≃ 33.94◦), s ≃ −1.61 arcsec yr−1, makes
this case anomalous. We thus obtain κ ≃ 2.20 and κ⋆ ≃ 1.95.
The proximity of κ to κ⋆ implies the resonant zone about the
Cassini state 2, here at ε2 ≃ 72.6◦, is large. This is demon-
strated at the bottom panel of Fig. 6. However, the rotation of
Periphas is retrograde, with the current obliquity value of ≃142◦,
and it does not interact with the Cassini resonance directly. The
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Table 2. Same as Table 1 but now for L5 Trojans.

Body b0 bmin bmax b0 bmin bmax s

884 Priamus –29.99 –31.75 –29.23 –46.89 –47.80 –44.73 –11.82
1173 Anchises –55.87 –56.02 –52.66 –25.04
1208 Troilus –30.09 –59.40 6.51 –10.53 –53.78 9.49 –0.41
1867 Deiphobus 80.07 –14.15 85.11 –6.23
1870 Glaukos 14.80 13.89 17.64 26.17 26.09 28.45 –9.48
1873 Agenor 37.38 34.43 55.38 6.49 4.18 11.69 –10.38
2207 Antenor –18.81 –18.89 –18.26 –15.69
2241 Alcathous 67.54 64.34 69.01 48.59 46.41 49.43 –11.63
2363 Cebriones –37.76 –38.51 –8.07 –4.06
2893 Peiroos 72.73 63.41 75.17 –12.90
2895 Memnon 8.25 8.20 27.04 –3.63
3240 Laocoon 72.77 71.91 77.27 –12.91
3317 Paris 35.98 24.44 50.76 30.91 21.69 40.63 –3.33
3451 Mentor 15.90 11.98 16.57 –16.29
4348 Poulydamas 47.69 41.30 49.88 –11.47
4707 Khryses 75.52 72.13 78.08 70.24 68.02 71.86 –12.87
4709 Ennomos 74.02 58.28 75.12 –6.77
4715 – 56.15 48.80 61.35 –13.85
4722 Agelaos 8.25 6.27 10.00 23.96 23.62 28.16 –11.28
4792 Lykaon 45.33 25.13 46.37 66.11 58.90 69.29 –12.01
4828 Misenus 84.11 69.86 86.81 53.35 45.87 53.84 –11.05
5130 Ilioneus –25.46 –28.87 –24.97 –25.46 –28.87 –24.97 –16.14
5144 Achates –30.96 –31.49 –30.50
11089 – –66.62 –66.84 –64.86 –22.82
15502 – –68.83 –69.24 –59.08 –30.14 –35.93 –29.96 –14.58
16428 – 66.17 53.91 68.32 55.81 32.93 56.46 –11.42
16560 Daitor 60.32 56.41 61.07 72.00 62.34 73.58 –25.72
17314 Aisakos –80.47 –80.89 –77.67 –56.88 –60.36 –56.55 –13.10
17365 – 69.13 56.88 83.25 –11.25
17414 – –77.48 –89.98 –71.12 –12.20
23549 Epicles –88.24 –89.97 –73.36 –12.67
23694 – –6.84 –7.29 –2.48 3.23 1.20 53.73 –18.67
24471 – 75.38 15.98 89.92 –12.03
30705 Idaios 47.35 31.72 54.99 55.18 44.82 65.94 –10.34
31342 – 45.92 31.22 81.78 26.05 14.40 43.35 –2.99
31344 Agathon 52.05 51.68 69.57 36.05 28.27 36.53 –28.28
31819 – 48.93 48.73 86.32 22.85 13.75 22.95 –20.12
32339 – 33.68 25.50 33.71 –11.90
32615 – 43.10 41.24 43.87 85.93 81.89 89.05 –26.03
32811 Apisaon 20.19 13.40 20.91 60.28 56.90 85.48 –15.43
34746 Thoon 23.88 21.56 63.91 2.24 –0.15 11.17 –7.67
34835 – 50.56 50.19 51.85 45.44 44.06 47.52 –30.12
51364 – 67.23 42.39 81.49 53.31 39.11 61.85 –19.92
51984 – –83.34 –89.81 –64.69 –78.23 –87.11 –77.89 –11.35
55474 – 71.90 42.45 75.05 41.22 14.79 43.43 –12.85
58931 – –81.71 –82.66 –72.87 –53.47 –62.09 –52.65 –15.64
63923 – –57.13 –58.10 –54.52 –41.41 –43.66 –40.78 –16.94
76867 – –43.98 –61.86 –30.57 –31.12 –50.57 –23.29 –3.05
99943 – –17.70 –21.01 –13.45 –12.91 –13.90 –9.58 –25.24
124729 – 47.44 29.98 48.34 53.32 52.92 79.85 –12.23

Notes. Only 5144 Achates, whose orbit was exhibiting stable chaos over a period of 50 Myr, was unsuitable for the accurate determination of the
proper frequency s.

evolutionary track of the Periphas’ spin evolution is shown on
Fig. 6 confirms it circulates about the Cassini state 3. Still,
the Cassini resonance reaching up to obliquity of ε ≃123◦
pushes even the retrograde solutions to perform large obliquity
variation, nearly 30◦ as shown in the upper panel of Fig. 6.

In order to demonstrate that the existence of the Cassini
resonant zone is not a necessary condition for large latitude oscil-
lations we consider (4834) Thoas, another L4 Trojan (Table 1). In
this case, the proper inclination has a value I ≃ 27.05◦ and the
proper frequency s ≃ −4.58 arcsec yr−1. The rotation period is
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Fig. 6. Results from a short-term integration of the rotational pole direction s for the L5 Trojan (1867) Deiphobus (left panels) and for the L4 Trojan
(15663) Periphas (right panels). The top panel shows the osculating obliquity as a function of time. The bottom panel provides a projection of the
s evolution over the 2 Myr timespan onto the phase space defined by the proper-frame variables: (i) obliquity εp on the ordinate, and (ii) longitude
ϕp at the abscissa. The numerically integrated evolution is shown by a black line with the initial conditions shown by the blue diamond. The gray
lines are idealized flow-lines from the simple Colombo top model. Red line is the separatrix of the resonant zone, and red points are locations of
the Cassini state 2 (the Cassini state 4 is at the junction of the two separatrix branches with ϕp = ±180◦).

not suspiciously long, P ≃ 18.19 h, and thus the precession con-
stant is rather low α ≃ 6.20 arcsec yr−1. As a result κ < κ⋆ in this
case, but not much smaller due to the moderately small value
of the proper frequency s and moderately long rotation period
(κ ≃ 1.35, while κ⋆ ≃ 1.87). There are only two Cassini states,
but due to the proximity of κ to κ⋆ the Cassini state 2 is forced
to already a large obliquity value of ε2 ≃ 61.6◦. Figure 7 illus-
trates the whole situation and also shows Thoas’ spin evolution
over the next 2 Myr interval starting with our unique pole solu-
tion. The bottom panel shows a projection of the spin evolution
into the phase-space variables of the Colombo model associated
with the proper variables. The spin axis of Thoas performs a
slow circulation about the Cassini state 2 shifted to an anoma-
lously large value of the obliquity. This evolution then triggers a
large amplitude of Thoas’ obliquity oscillations, also reflected in
large latitude excursions.

The takeaway message from this section is that all cases for
which the polar latitude was found to oscillate in a large interval
of values in our numerical simulations (Tables 1 and 2) may be
understood using the Colombo top model. They correspond to
the situations when κ is not much smaller than κ⋆, therefore when
the Cassini resonance exists of is about to emerge. Due to the
typically large proper inclination of Trojan orbits, the Cassini
resonance zone occupies a large portion of the phase space and
drives large obliquity oscillations.

6.3. Unstable Trojans

For completeness, we also comment on orbital stability for Tro-
jans in our sample with resolved rotation poles. In most cases,

their orbits were fairly stable over the interval of 50 Myr used for
monitoring the variations of the pole latitude. But in five cases
we noticed orbital instability onset even during this period of
time. Here we report only those deemed “macroscopically unsta-
ble”, in which orbital eccentricity or inclination exhibited large
jumps, and we omit cases exhibiting traces of only “stable chaos”
on the 50 Myr timescale.

Analysis of the Trojan cloud stability has a long history, and
it is not our goal to provide a comprehensive review here. The
observed population analysis (as opposed to purely mathematical
studies) was provided by Milani (1993), who computed synthetic
proper elements of a set of 174 Trojans based on a megayear-long
numerical integration. Some 13% of these orbits showed vari-
ous traces of instability evidenced by the Lyapunov timescales
between 60 and 600 kyr. This sample of chaotic orbits was later
studied in more detail using numerical integrations spanning a
longer timescale of 50 to 100 Myr (e.g., Pilat-Lohinger et al.
1999; Dvorak & Tsiganis 2000; Tsiganis et al. 2000). These
studies helped to describe macroscopic orbital instability and
identified the associated dynamical reasons. Even longer, the
gigayear timescale orbital stability of Trojans was studied by
Levison et al. (1997), as afforded by development in symplectic
numerical tools. These authors estimated that some 12% of real
Trojans escape over the Solar System age from their population.
This fraction was recently even increased to about 23% by Holt
et al. (2020), perhaps by using data for many more, especially
small Trojans. Overall, the nearly steady leakage of even large
Trojans may be understood by realizing their formation mecha-
nism that allows them to fully fill their phase space up to limits
of instability (e.g., Nesvorný et al. 2013). Finding that few of
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Fig. 7. Results from a short-term integration of the rotational pole
direction s for the L4 Trojan (4834) Thoas. The top panel shows the
osculating obliquity as a function of time. The bottom panel provides
a projection of the s evolution over the 2 Myr timespan onto the phase
space defined by the proper-frame variables: (i) obliquity εp on the ordi-
nate, and (ii) longitude ϕp at the abscissa. The numerically integrated
evolution is shown by a black line with the initial conditions shown by
the blue diamond. The gray lines are idealized flow-lines from the sim-
ple Colombo top model. Red point marks the location of the Cassini
state 2.

our studied 90 Trojans reside on noticeably unstable orbits is
therefore not surprising.

Figure 8 shows results from our simulations of two macro-
scopically unstable Trojans in our sample: (i) (1868) Thersites
(left), and (ii) (5144) Achates (right)9. Especially the large eccen-
tricity Achates’ orbit indicates macroscopic chaos witnessed
here by irregular evolution of the inclination (top panel on Fig. 8;
see also Dvorak & Tsiganis 2000) due to intermittent interac-
tion with several secular resonances (of which ν16 is the most
prominent). In fact, we numerically propagated the nominal orbit
of (5144) Achates together with 49 very close orbital clones
(all starting from the uncertainty interval of its currently deter-
mined orbit) for 1 Gyr forward in time. We found that a median
timescale before ejection from the Trojan region was ≃220 Myr,
in good agreement with the data in Fig. 1 of Levison et al.
(1997), and comparable to the case of yet another unstable Trojan
(1173) Anchises (see Horner et al. 2012). Similarly, (1868) Ther-
sites is a well studied unstable orbit (left panel; see Tsiganis et al.
2000). In our simulation, the inclinations instability onsets at

9 Results for the remaining three Trojans on unstable orbits in our
sample, namely (1173) Anchises, (32615) 2001 QU277, and (51364)
2000 SU333 all in the L5 camp, are very similar to that of Achates.

≃44 Myr. In both cases, however, the orbital instability has lit-
tle effect on the rotation pole latitude (bottom panels on Fig. 8
where we used the P1 solution for both Trojans). This is because
both objects have sufficiently short rotation periods, such that
always κ ≪ κ⋆ during the integrated time interval. As a result,
the unstable nature of the Thersites and Achates orbits does
not seem to confuse our conclusions as far as the rotation pole
categories (prograde or retrograde) are concerned.

7. Discussion

The axis ratios of JTs with shape models are formally com-
patible in b′/c′ and incompatible in a′/b′ with the population
of larger (D > 30 km) MBAs. JTs contain less near-spherical
and more elongated bodies than the sample of MBAs. There
are, however, several caveats concerning the JTs. Namely, (i) the
number of objects is rather small compared to MBAs (90 vs.
218), (ii) the axis ratios have large uncertainties in cases where
the shape models are based on limited photometric datasets,
and, in general, concerning the c dimension, (iii) the sample is
biased toward objects with larger amplitudes, thus we likely miss
(oblate) spheroids. Therefore, it is difficult to conclude whether
the shapes are indeed similar within the two populations. The
open question here is whether oblate spheroids dominate in the
JT population, which might indicate the lesser importance of col-
lisions since their formation. We do not see many in our sample,
which is a common property with MBAs. However, we already
learned an important lesson about the bias in the main belt con-
cerning oblate spheroids. Only recently, the shape models or
large asteroids of (10) Hygiea, (31) Euphrosyne, (324) Bam-
berga, or (702) Interamnia were derived thanks to disk-resolved
images from the high-resolution SPHERE instrument mounted
on the 8 meter-class Very Large Telescope (Vernazza et al.
2020, 2021; Yang et al. 2020; Hanuš et al. 2020). All these
asteroids have shapes consistent with an oblate spheroid and
have not been derived before using optical photometry only
(thus no previous convex shape models). It is likely that the
difficulty in deriving the shapes of such bodies applies to JTs
as well.

In our study, we focus on testing whether the observed phys-
ical properties of JTs are consistent with those predicted based
on the currently most acceptable formation scenario – capture to
their current orbits near the Lagrangian points of Jupiter during
the early reconfiguration of the giant planets from the planetes-
imals born in the massive trans-Neptunian disk. The numerical
simulations of the streaming instability, the leading mechanism
for the planetesimals formation, predict the spin obliquity dis-
tribution and the ratio between the number of prograde and
retrograde rotators. Both predictions are testable by observed
properties. The streaming instability predicts a somewhat larger
fraction of prograde rotators than we observe (75% vs. 60%).
However, this could be attributed to, for example, (i) partial
randomization due to collisional evolution prior to the capture,
or (ii) due to post-capture collisional and orbital evolution. We
modeled the latter mechanism in Sect. 6 and showed that it can
be responsible for some minor depletion of prograde rotators.

In Sect. 5, we consider only planetesimals with D > 25 km.
This limit corresponds to the absolute magnitude of H ∼ 12 mag
(assuming a geometric visible albedo of pV = 0.05). Thus, we
limit our JT sample to objects with H ≤ 12 mag for the analy-
sis of the pole obliquities. This limit also conveniently excludes
objects whose obliquities could be affected by YORP thermal
forces. Although YORP is weaker for JTs than for MBAs given
the difference in the distance from the Sun, the size at which it
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Fig. 8. Two orbitally unstable Trojans: (i) L4 object (1868) Thersites in the left panels, and (ii) L5 object (5144) Achates in the right panels. The
top panels show time dependence of the osculating orbital inclination with respect to the invariable plane. Bottom panels show the evolution of the
pole P1 latitude in the same reference system.

is important is roughly the same for the two populations. This
is due to the JTs having significantly longer collisional life-
times than similarly sized MBAs. Considering JTs smaller than
∼25 km in the spin vector analysis could affect our interpre-
tations as those spin vectors could be significantly evolved by
the YORP.

In Fig. 4, we compare the obliquity distributions of sev-
eral populations, including JTs, and of the prediction based
on streaming instability (SI). The obliquity distribution of JTs
seems to be visually the closest match to the SI distribution,
however, the K–S test does not support the hypothesis that the
two samples are drawn from the same distribution (p-value
= 0.015). Indeed, JTs lack members with obliquities in the inter-
val 50◦–70◦ and contain more retrograde bodies. As discussed
earlier, several dynamical processes could affect the distribu-
tion. In addition, the observing bias should be present as well.
The shape and spin solutions are derived by the convex inversion
method and it was shown by Hanuš et al. (2011) that objects with
obliquities near 0◦ and 180◦ are derived more successfully than
bodies with obliquities near 90◦, namely even by 30–40%. This
is because the former bodies lack the pole-on observing geome-
try, which provides only low-amplitude brightness changes often
comparable to the noise scatter. By correcting the observed
obliquity distribution on this bias, we would obtain more objects
with mid-value obliquities and thus a better agreement with the
SI distribution. However, the excess of retrograde rotators would
still exist. Interestingly, the obliquities of JTs and large main-belt
asteroids are the most similar (although inconsistent) with the K-
S test p-value = 0.02. The main difference is for small obliquities
(ε < 50◦).

Although the observed sample of JT obliquities is still
rather small, the comparison with the streaming instability pre-
dicted obliquities suggests that this formation scenario could be

consistent with the observed properties of JTs. The main issue is
the overabundance of retrograde rotators with ε > 130◦.

8. Conclusions

Deriving physical properties of JTs is challenging due to vari-
ous obstacles – the observing geometry is changing much slower
than for MBAs and is limited to phase angles (i.e., angle Sun-
asteroid-Earth) up to just a few degrees; their large distance to
the Earth together with their low albedo makes them rather faint
objects accessible to at least meter-class telescopes. Therefore,
their photometry is scarce and often affected by large uncertain-
ties. Despite that, the currently available photometric datasets
can be successfully used for the physical characterization of
several tens of JTs.

By analyzing optical datasets for ∼1000 JTs, we obtained
spin state and shape solutions in 79 cases (Sect. 4). We found that
the observed distribution of the pole obliquities/latitudes of JTs
is broadly consistent with expectations from the streaming insta-
bility (Sect. 5), which is currently considered the leading mech-
anism for the formation of planetesimals in the trans-Neptunian
disk. Observed JTs latitude/obliquity distribution has a slightly
smaller prograde/retrograde asymmetry (excess of obliquities
>130◦) than that expected from the existing streaming instability
simulations. However, this discrepancy can be plausibly recon-
ciled by the effects of the post-formation collisional activity.
Our numerical simulations of the post-capture spin evolution in
Sect. 6 indicate that the JTs’ pole distribution is not significantly
affected by dynamical processes such as the eccentricity excita-
tion in resonances, close encounters with planets, or the effects
of non-gravitational forces. However, a few JTs exhibit large lat-
itude variations of the rotation pole and may even temporarily
transition between prograde- and retrograde-rotating categories.
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As surveys with better accuracy, faster cadence, and higher
limiting magnitudes are substituting or supplementing the
already established surveys, better data become available. This
will lead to an increase in the number of spin state solutions
within the JTs, which should increase the significance of our
results and possibly reveal hidden dependencies within various
physical properties of JTs. Ideally, the larger statistical sample
should further constrain theoretical models aiming at explaining
the origin of the JT population.

JTs are also commonly targeted by the stellar occultation
hunters – the event predictions are now rather accurate leading to
many positive detections, which further improves the ephemeris,
thus future stellar occultation predictions. Convex shape mod-
els, together with the stellar occultation profiles can provide
direct measurements of the dimensions, volume, and eventu-
ally bulk density if an accurate mass estimate is available (e.g.,
from system multiplicity). Occultation measurements also pro-
vide reliable estimates of axis ratios, which will help to assess
whether the shapes of JTs are similar to the shapes of MBAs.

The remote-like studies of physical properties of JTs such
as ours represent invaluable support for the insitu exploration of
several JTs by the Lucy mission (Levison et al. 2021). Only a
combination of both approaches can lead to the most complete
understanding of the JT population and, if properly modeled,
also the trans-Neptunian population.
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Ďurech, J., Hanuš, J., & Vančo, R. 2019, A&A, 631, A2
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Appendix A: Additional figures

Fig. A.1. Assessing the systematic uncertainties by using assumed shapes. Left panel: The cumulative distribution of obliquities for JTs (orange),
for synthetic JTs population assuming the shape models of (433) Eros (green) and (3) Juno (red), and of planetesimals obtained in our simulations of
the streaming instability (SI) model (blue). We also plot the cumulative distributions for randomly oriented spins (brown), and large (D > 100 km)
MBAs (purple, spin states adopted from DAMIT). Right panel: The a′/b′ vs. b′/c′ axis ratios of JTs, of large MBAs (D > 30 km), and of synthetic
JT populations assuming the shape models of (433) Eros and (3) Juno. We also indicate the axis ratios for the original shapes of (433) Eros and
(3) Juno.

A56, page 17 of 22



Hanuš, J., et al.: A&A, 679, A56 (2023)

-100 -80 -60 -40 -20 0 20 40 60 80 100

 [km]

-80

-60

-40

-20

0

20

40

60

80

 [
k
m

]

(588) Achilles     2021/11/24

1s

Fig. A.2. Projection of the shape model of (588) Achilles. The volume
equivalent diameter is 131 ± 8 km.
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Fig. A.3. Projection of the shape model of (884) Priamus. Only the
model with the pole (1◦,−32◦) agrees with the observed chords, its
equivalent diameter is 105 ± 4 km.

Fig. A.4. Projection of the shape model of (911) Agamemnon. The
model with the pole (290◦, 35◦) agrees with the observed chords, its
equivalent diameter is 153 ± 6 km.
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Fig. A.5. Projection of the shape model of (1437) Diomedes. Only the model with the pole (147◦, 5◦) agrees with the observed chords, its equivalent
diameter is 133 ± 5 km.
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Fig. A.6. Projection of the shape model of (1867) Deiphobus. The
convex shape model (blue) with the pole (338◦, 79◦) does not agree
well with the observed chords. The nonconvex ADAM model (orange)
provides a much better fit with the pole direction (329◦, 67◦) and an
equivalent diameter of 108 ± 4 km. The second chord from the left is
not consistent with the two other chords next to it, probably due to some
systematic error (or the shape is highly concave at this place). Due to
the negative observation (miss chord on the right), the shape cannot be
larger and its size is significantly smaller than the values derived from
Akari (131 ± 2 km) and IRAS (123 ± 4 km) data.
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Fig. A.7. Projection of the shape model of (2207) Antenor. The model
with the pole (86◦,−19◦) and equivalent diameter of 101 ± 3 km agrees
well with the observed chords.

A56, page 20 of 22



Hanuš, J., et al.: A&A, 679, A56 (2023)

-60 -40 -20 0 20 40 60

 [km]

-50

-40

-30

-20

-10

0

10

20

30

40

50

 [
k
m

]

(4709) Ennomos     2011/08/11

1s

-60 -40 -20 0 20 40 60

 [km]

-50

-40

-30

-20

-10

0

10

20

30

40

50

 [
k
m

]

(4709) Ennomos     2018/02/04

1s

-40 -20 0 20 40 60

 [km]

-40

-30

-20

-10

0

10

20

30

40

 [
k
m

]

(4709) Ennomos     2020/04/22

1s

-60 -40 -20 0 20 40 60

 [km]

-50

-40

-30

-20

-10

0

10

20

30

40

50

 [
k
m

]
(4709) Ennomos     2021/11/24

0.5s

Fig. A.8. Projection of the shape model of (4709) Ennomos. The model with the pole (241◦, 75◦) and equivalent diameter of 91 ± 4 km agrees
with the observed chords.
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Fig. A.9. Projection of the shape model of (31344) Agathon. The
model with the pole (112◦, 52◦) and equivalent diameter of 38 ± 1.5 km
agrees with the observed chords better than the second pole solution
(294◦, 36◦) and equivalent diameter of 35 ± 3 km.
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