The morphology and evolution of Star Forming Regions
 \&

 Binary Stars

 Binary Stars}

Christian Boily, Observatoire astronomique de Strasbourg, France T. Maschberger, E. Moraux, C. Becker, IPAG, Grenoble J. Dorval, Strassburg (PhD)
V. Niederkorn, Strassburg (MSc), H. Cromley (JHU), T. Kovacs (Budapest) Aarseth meeting / Prague Czech Rep / December 12-15 2017

Observations ..

NGC604 in M33

Orion

- $\varrho \approx 10^{1}-10^{7} \mathrm{Msun}_{\text {sun }} / \mathrm{pc}^{3}$

Wide range of star forming regions:

- $\mathrm{M}_{\text {cloud }} 10$ to \approx few $\times 10^{6} \mathrm{M}_{\mathrm{o}}$
- $\sigma \approx 30 \mathrm{~km} / \mathrm{s} @ 1 \mathrm{pc}$

Credits: image lifted from NASA / PotD ++

Zoom-in : Spitzer IR data Exemple: the ONC star-forming region

Green : young stars (TTauri, ..)

Red dots : proto-stars

Figure 14. Left: mosaic of the ONC field. Blue is $4.5 \mu \mathrm{~m}$, green is $5.8 \mu \mathrm{~m}$, and red is $24 \mu \mathrm{~m}$. Right: $4.5 \mu \mathrm{~m}$ image with the positions of dusty YSOs superimposed. Green diamonds are young stars with disks, red asterisks are protostars (including the faint candidate protostars and the 10 red candidate protostars detected at $24 \mu \mathrm{~m}$ but not at $4.5,5.8$, and $8 \mu \mathrm{~m}$). In both panels, the green line outlines the surveyed field. The Orion Nebula is the extremely bright region just south of the center of the but not at 4.5, 5.8, and $8 \mu \mathrm{~m}$). In both paness, the green line outines the surveyed fiel. The Orion Nebula is the extremely bright region just south of the center of the
mosaic. The central region of this nebula is saturated in the $24 \mu \mathrm{~m}$ band. The extended reflection nebula to the north of the Orion Nebula is NGC 1977. Between the mosaic. The central region of this nebula is saturated in the $24 \mu \mathrm{~m}$ band. The extended reflection nebula to the north of the Orion Nebula is NGC 1977. Between the
Orion Nebula and NGC 1977 is a filament rich in protostars known as the OMC- $2 / 3$ region. The large bubble to the southwest of the Orion Nebula is the extended Orion Nebula and NGC 1977 is a
Orion Nebula (Gudel et al. 2008).

Credits : S. T. Megeath et al. 2012, 2015

Ph. André et al.: Kinematics of the Ophiuchus protocluster condensations

Kinematics in the @Ophiuchus region (IRAM 30 m data) credits : Ph. André et al. 2007, AA

Building up by cooling \& accreting: hydrodynamical fragmentation

:: Start from smooth density + randomly-seeded turbulent v-field (from Bonnell, Bate et al. 2003++, others ..)

- Isothermal gas, FLASHv3
- rotational : $\nabla \cdot \underline{f}=0$
- compressive : $\nabla \times \underline{f}=0$
- Stochastic Kolmogorov spectrum
- Shocks, dissipation .. drivers ?

Building up by cooling \& accreting: hydrodynamical fragmentation

:: Start from smooth densitv + randomly-seeded turbulent v-field

- Shocks, dissipation .. drivers ?
al. 2003++, others ..)

Fragmentation in
 star-formation calculations

SPH re-simulation of isothermal collapse but with opacity

Time in units of the free-fall time $\sim 2 \times 10^{5} \mathrm{yrs}$

From $250>180$ cores formed ($\mathrm{e} \sim 1.8 \times 10^{3} \mathrm{Msun} / \mathrm{pc}^{3}$ initially) $\mathrm{M}=500 \mathrm{M}_{\text {sun, }} \mathrm{R}_{\mathrm{o}} \approx 1 / 2 \mathrm{pc} \mathrm{T} \approx 10 \mathrm{~K}$ Linear resolution ~ 0.5 AU

Still ~ 3 orders of magnitude from rich clusters

Transition : embedded \triangleright gas-free. Yes, but how .. ?

- embedded cores / associations m.f. ~ cluster m.f.
- details of mass-loss unclear, slower than energy argument would suggests (winds, SN, .. e.g. J. Dale 10/2015 webcast STScl; S. McMillan, op. recit.) $\quad \square$ boost survival rate
- active star-forming regions with gas have stellar kinematics compatible with in-situ star formation (e.g. م Ophiucus [André et al. 2007] or NGC1333 where $\sigma \sim 0.8 \mathrm{~km} / \mathrm{s}$ [Foster et al. 2015, In-Sync survey])
- Global phase-mixing and relaxation on a timescale well exceeding the star-formation time-scale

Transition : embedded \triangleright gas-free. Yes, but how .. ?

NGC604 in M33

- embed
- details argume 10/2015
- active kineme (e.g. p Opt al. 2015, In-
- Global scale V

Transition : embedded \triangleright gas-free. Yes, but how .. ?

- embedded cores / associations m.f. ~ cluster m.f.
- details of mass-loss unclear, slower than energy argument would suggests (winds, SN, .. e.g. J. Dale 10/2015 webcast STScl; S. McMillan, op. recit.) $\quad \square$ boost survival rate
- active star-forming regions with gas have stellar kinematics compatible with in-situ star formation (e.g. م Ophiucus [André et al. 2007] or NGC1333 where $\sigma \sim 0.8 \mathrm{~km} / \mathrm{s}$ [Foster et al. 2015, In-Sync survey])
- Global phase-mixing and relaxation on a timescale well exceeding the star-formation time-scale

Ph. André et al.: Kinematics of the Ophiuchus protocluster condensations

Kinematics in the @Ophiuchus region (IRAM 30 m data) credits : Ph. André et al. 2007, AA

Initial conditions for stellar dynamics: different approaches

- Classic argument: stars are as cool/cold as gas is $\sigma^{2} \approx k_{\beta} T$

All mixed up, no mass- or length scale: monolithic collapse, no structure in density or velocity

- Some spatial profile (King, Plummer, ..) with velocities drawn from «equilibrium» d.f. (e.g. Caputo et al. 2014, ..)

Turbulence imprints young stellar spatial distributions (W43 - Nguyen et al. 2013; G0.253+0.016 / ALMA, Rathborne et al. 2015)

- 'Fractal' distribution : looks like star-forming region, but velocities odd, ad hoc (Goodwin \& Withworth 2004, R. Allison et al. 2009++, B. Elmegreen 1997, ..)

Initial conditions : fractals

* "Fractal" distribution : looks like star-forming regions, but velocities odd, ad hoc (e.g. Allison et al. 2009, 2010)

:: Mass segregation enhanced during relaxation (Vesperini et al 2007, '12,'15)

Segregation in young stellar populations : OB star in Carina

Figure 1.8: Herschel IR 70m observations of the Carina Nebula, with YSOs as red points and diamonds. Cyan crosses show OB stars. Both the gas and prestellar objects follow a substructured distribution. The figure was extracted from Gaczkowski et al. (2013).

Initial conditions: it's bottom up++

 Fragmentation modes + collisional evolutionCooling leads to drop in Jean length and the growth of fragmentation modes

Cooling by gravity $=$ two-body diffusion of E_{k} or expansion of entire system (\triangleright analogy only, not thermal v ; ok with a hard wall [gas pressurel)
$T d S=d U+P d V=0:: d U$, if $d V$
:: Mass segregation develops during the fragmentation process \rightarrow collisional integrator: nb6/++, phiGPU: narrow mass range ok
:: Seek out a fragmented configuration with consistent v-field
:: Adiabatic cooling time = star formation time-scale (constraint)

Study the fragmentation of self-gravitating fluids

■ Cold fluid perturbed by density fluctuations : linear analysis

- Work on a spherical mesh (boundaries) but with randomly seeded perturbations (in density)

■ Write Lagrangian operators

- Integrate .. but stay coherent

$$
\begin{array}{r}
\frac{d^{2}}{d t^{2}} r^{\prime}=-\nabla_{r^{\prime}}(\Phi+\delta \Phi) \\
\nabla_{r^{\prime}}=\nabla_{r}+\xi \cdot \nabla_{r}(\nabla) \\
r^{\prime}=r+\xi
\end{array}
$$

Results begin to "look like" star forming regions but something is missing : time + resolution $(D$ stellar cores)

Fragmentation of self-gravitating fluids

http:/ / www.freefem.org

mail to FreeFem++ list
Sections
Home
Wiki
Mailing list
FreeFem++-cs
Freefem++ on the web
Showcase
Web News
Documentation
freefem++doc.pdf (9.3 Mb, Sep
29, 2015 10:28:44.)
Last News (INNOVATION)
HISTORY
knows BUGS
Una documentation en español
Chinese documentation
Japanese (Kohji Ohtsuka)
TWSIAM Activity Group
Compilation/Installation Download

FreeFem++ v 3.46

(April 082016 17:56:26.)
Introduction

FreeFem++ is a partial differential equation solver. It has its own language. freefem scripts can solve multiphysics non linear systems in 2D and 3D.

Problems involving PDE (2d, 3d) from several branches of physics such as fluid-structure interactions require interpolations of data on several meshes and their manipulation within one program. FreeFem++ includes a fast $2 \wedge$ d-tree-based interpolation algorithm and a language for the manipulation of data on multiple meshes (as a follow up of bamg (now a part of FreeFem++).

FreeFem++ is written in C++ and the FreeFem++ language is a C++ idiom. It runs on Macs, Windows, Unix machines. FreeFem++ replaces the older freefem and freefem+.

If you use Freefem++ please cite the following reference in your work (books, articles, reports, etc.): Hecht, F. New development in Freefem++. J. Numer. Math. 20 (2012), no. 3-4, 251-265. 65 Y 15
the bibtex is:
darticle \{MR3043640,
AUTHOR $=\{$ Hecht, F. $\}$, TITLE $=\{$ New development in FreeFem ++$\}$,
JOURNAL $=\{$ J. Numer. Math.\}, FJOURNAL $=$ \{Journal of Numerical Mathematics $\}$,
VOLUME $=\{20\}$, YEAR $=\{2012\}$,
NUMBER $=\{3-4\}$, PAGES $=\{251--265\}$,
ISSN $=\{1570-2820\}$, MRCLASS $=\{65 \mathrm{Y} 15\}, \operatorname{MRNUMBER}=\{3043640\}$,
\}

HPC and FreeFem++

Fragmentation of self-gravitating fluids

- http:/ / www.freefem.org

Procedure - avoid boundaries Dorval et al. 2016 MNRAS, 2017

$N \sim 100 \mathrm{k}$ stars
$N \sim 3 k$
Rich open cluster

Extract subset of stars
clumps: MST technique

Stellar clumps: mass function, and stellar m.f.

Equal-mass models vs Salpeter IMF (two upper truncation values)

Stellar clumps: mass function, and stellar m.f.

Equal-mass models vs Salpeter IMF (two upper truncation values)

Stellar clumps:

correlation with $\max \left\{m_{\star}\right\}$

:: white dash: prediction from «radius of influence» of most massive star in clump

Stellar clumps: 50\% of all stars top-heavy, segregated ..

:: blue / grey : Salpeter (ensemble averaging)

Stellar clumps: 50\% of all stars top-heavy, segregated...

Figure 13. Histogram of the fractional radial ranking of the most massive (top), second most massive (middle) and third most massive (bottom) sink pa Figure 13. Histogram of the fractional radial ranking of the most massive (top), second most massive (middle) and third most massive (botom) sink pa
its associated subcluster, split up by the number of sinks in the subcluster. The composite population of the $10^{4} \mathrm{M}_{\odot}$ calculation is used to make the histı In the absence of mass segregation, the histogram would be flat: the peak at small values shows that the massive sinks are preferentially found near the In the absence of mass segregation, the histogram would be flat: the peak at small values shows that the massive sinks are preferentially found near
centre. The second peak with a ranking of ≈ 1, especially for the second and third most massive sink, is due to mergers, where two centres are still pre

Figure 10. Radial ranking of first, second and third most massive star in each clump for a model with $\mathrm{N}=40000$ stars (R40h100).

Ranking diagnostics of Maschberger et al. (2010) for hydro simulation cf. Vesperini, McMillan 2007, $-12,-15$

Stellar clumps: 50\% of all stars top-heavy, segregated...

Figure 13. Histogram of the fractional radial ranking of the most massive (top), second most massive (middle) and third most massive (bottom) sink pa Figure 13. Histogram of the fractional radial ranking of the most massive (top), second most massive (middle) and third most massive (botom) sink pa
its associated subcluster, split up by the number of sinks in the subcluster. The composite population of the $10^{4} \mathrm{M}_{\odot}$ calculation is used to make the histı In the absence of mass segregation, the histogram would be flat: the peak at small values shows that the massive sinks are preferentially found near the In the absence of mass segregation, the histogram would be flat: the peak at small values shows that the massive sinks are preferentially found near
centre. The second peak with a ranking of ≈ 1, especially for the second and third most massive sink, is due to mergers, where two centres are still pre

Figure 10. Radial ranking of first, second and third most massive star in each clump for a model with $\mathrm{N}=40000$ stars (R40h100).

Ranking diagnostics of Maschberger et al. (2010) for hydro simulation cf. Vesperini, McMillan 2007, $-12,-15$

Exploring morphology using the Minimum Spanning Tree approach

- Morphology : apparent vs real .. selection, extinction Use the Pan-Starrs 1 extinction map (Green et al. 2015, ..) Set up a clump with $N \sim 400$ stars (e.g. Ic348)
Photometry, bolometric corrections: set the object at different DM

Exploring morphology using the Minimum Spanning Tree approach

- Morphology : apparent vs real .. selection, extinction Use the Pan-Starrs 1 extinction map (Green et al. 2015, ..) Set up a clump with $N \sim 400$ stars (e.g. Ic348)
Photometry, bolometric corrections: set the object at different DM

Exploring morphology using the Minimum Spanning Tree, all member stars

Different projection angles
Selection by mass / renormalized

Exploring morphology using the Minimum Spanning Tree, all member stars

Different projection angles
Selection by mass / renormalized

MST : Ic348 / Uniform

MST : Ic348 / Mass selection

Length of edges [] ->

Exploring morphology using the Minimum Spanning Tree approach

Morphology : apparent vs real .. selection, extinction Use the Pan-Starrs 1 extinction map (Green et al. 2015, ..) Set up a clump with $\mathrm{N} \sim 400$ stars (e.g. Ic348)
Explore the impact of extinction on the appearance of the skeleton

Exploring morphology using the Minimum Spanning Tree approach

Morphology : apparent vs real .. selection, extinction Use the Pan-Starrs 1 extinction map (Green et al. 2015, ..) Set up a clump with $\mathrm{N} \sim 400$ stars (e.g. Ic348)
Explore the impact of extinction on the appearance of the skeleton

Exploring morphology using the Minimum Spanning Tree approach

Use the Pan-Starrs 1 extinction map (Green et al. 2015, ..) Set up maps at different distance scales (DM), same angular size

Exploring morphology using the Minimum Spanning Tree approach

Use the Pan-Starrs 1 extinction map (Green et al. 2015, ..)
Set
FFT power spectrum : fixed direction on the sky, alar size distance modulus ranging form 7 to 11

Exploring morphology using the Minimum Spanning Tree approach

- Morphology : apparent vs real .. selection, extinction
- Use the Pan-Starrs 1 extinction map (Green et al. 2015, ..)

Extinction (= distance effect) : shift on MST statistics
Set up a clump with $\mathrm{N} \sim 400$ stars (e.g. Ic348)
K-band extinction / bolometric correction : $\pm 20 \%$ completeness @ $\mathrm{M}_{\mathrm{K}}=21$

Exploring morphology using the

 Minimum Snanning Troo approachMorphology : Use the Pan-S Extinction (= Set up a clum K-band extincti $\mathrm{M}_{\mathrm{K}}=21$

inction
al. 2015, ..)
tistics
completeness @

Exploring morphology using the Minimum Spanning Tree approach

- Morphology : apparent vs real .. selection, extinction Use the Pan-Starrs 1 extinction map (Green et al. 2015, ..) Fourier transform : phase mixing on ~ 1 pc scale in ~ 1 Myrs

Exploring morphology using the Minimum Spanning Tree approach

Morphology : apparent vs real .. selection, extinction Use the Pan-Starrs 1 extinction map (Green et al. 2015, ..) Fourier transform se mixing on ~ 1 pc scale in ~ 1 Myrs K-band extinc ${ }^{+}$ completenes ${ }^{\text {r }}$

Exploring morphology using the Minimum Spanning Tree approach

.. or not:
example of an Kolmogorov-Smirnov statistics applied to NGC 1333.
To do: compare actual clusters with embedded models

9 arcmin aperture

7 arcmin aperture
© © (random_100_NGC 1333_7m_Star_YSO.png $+\quad K^{\pi}$ -

4 arcmin aperture

Exploring morphology Orion (ONC), Wd1, ..

Possible multiple pops in ONC (de Marchi et al. 2017) Un-relaxed embedded cores (Forster et al. 2015)

Integrated binary d.f. F(-E): dynamical evolution, heating, disruption

"Thermalised" equilibrium d.f. in binding energy $\mathrm{E}=-\mathrm{G} \mathrm{M} \mu / \mathrm{a}$

$$
f(-E)=K \exp (-\beta E) /(-E)^{5 / 2}
$$

The Boltzmann factor

$$
\beta=\frac{1}{k_{\beta} T}=\frac{1}{\frac{1}{2} m \sigma^{2}}
$$

The fraction of binaries heated at formation time scales with $\sqrt{ } \mathrm{N}$, the
 number of (proto) stars formed

$$
\frac{\delta W}{k_{\beta} T} \simeq \frac{25 \pi}{4} \sqrt{\frac{5}{6}} \times 10^{-5} \frac{a_{b i n}[A U]}{R_{o}[0.5 p c]} \sqrt{N}
$$

Stellar clumps:

Internal dynamics of multiple stars significant

:: Survival rate weakly dependent on N , sharp transition at the bounce $(t=$ dots)

Evolution up to global mixing / relaxation
t_{1} : internally, clumps dotted : violent in-fall t_{2} : mixing ($\sim 1 \mathrm{Myr}$) t_{3} : end ($\sim 4 \mathrm{Myr}$)

Processing of binary stars for models
with different N but same IMF + binary population
cf. Dorval PhD + et al. 2017

Stellar clumps:

Internal dynamics of multiple stars significant

Figure 7.4: Same key as Fig. 7.3. The data are from high density models.
:: different dissolution rates wrt to primary mass

Processing of binary stars less severe in open clusters (heavy primaries)

Erosion @ la
Marks-Kroupa $(2011,12)$
Collusion @ la
Kouwenhoven et a.l (2010)

$$
\text { cf. Dorval PhD + et al. } 2017
$$

Stellar clumps:

Internal dynamics of multiple stars significant

High density

Processing of binary stars less severe in
open clusters (heavy primaries)

Erosion @ la
Marks-Kroupa $(2011,12)$
Collusion @ la
Kouwenhoven et a.l (2010)

Stellar clumps:

The formation of tight binaries linked to environment

Exchange takes place within clumps "time allowing" cf. Leigh \& Geller 2015

The formation of tight binaries by binary-binary exchange collisions linked directly to the global mean density!
:: Collision rate for destruction When $\theta>100$: gravitational focusing important

$$
\begin{aligned}
\tau_{\text {coll }}^{-1} & =16 \sqrt{\pi} n \sigma a^{2} \Theta \\
& =8 \times 10^{-4} \mathrm{Myr}^{-1}\left(\frac{n}{700 \mathrm{pc}^{-3}}\right)\left(\frac{0.5 \mathrm{~km} \cdot \mathrm{~s}^{-1}}{\sigma}\right)\left(\frac{a}{\mathrm{AU}}\right)\left(\frac{M}{2 \mathrm{M}_{\odot}}\right)
\end{aligned}
$$

Stellar clumps:

The formation of tight binaries linked to environment

Exchange takes place within clumps "time allowing" cf. Leigh \& Geller 2015

The formation of tight binaries by binary-binary exchange collisions linked directly to the global mean density!
:: Collision rate for destruction When $\theta>100$: gravitational focusing important
$\tau_{\text {coll }}^{-1}=16 \sqrt{\pi} n \sigma a^{2} \Theta$
$=8 \times 10^{-4} \mathrm{Myr}^{-1}\left(\frac{n}{700 \mathrm{pc}^{-3}}\right)\left(\frac{0.5 \mathrm{~km} \cdot \mathrm{~s}^{-1}}{\sigma}\right)\left(\frac{a}{\mathrm{AU}}\right)\left(\frac{M}{2 \mathrm{M}_{\odot}}\right)$

Summary

- Young clusters (open, rich) start out with odd geometry and sub-virial global velocities
- They should mix quickly yet have time to form stars first ..
- The stellar clumps are top-heavy with respect to field stars ;
- Outflows lead to wide-binaries forming [:: phase-space correlations]
- bi-bi exchanges + tight binaries favoured in low-density environment [:: amplification by gravitational focusing]
- surrounding gas may yet lead to isolated tight binaries merging
- Extinction maps scaled down to map out the low-mass stars, explore morphology, dynamics

