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Geometrical Optics Approximation 5

Relativistic geometrical optics seen as an approximation of the
Maxwell equations can be adapted if the following is true (cf.
Bičák & Hadrava, 1975)

▶ typical wavelength λt of considered waves is short in
comparison with the typical scales on which the properties
of the medium (i.e., the refractive index, the velocity) vary,

▶ the waves are locally monochromatic, i.e., the variation
scales of wave properties (the amplitude, wavelength,
polarization) are large in comparison with λt,

▶ the characteristic curvature radius of the spacetime is much
larger than λt,

▶ the medium varies negligibly over one typical wave period.

Typically a non-dispersive isotropic medium is assumed, but
this approach can serve also in dispersive and anisotropic media.



Ray Propagation in Plasma 6

It is useful to apply Hamiltonian in the form1

H(xα, pα) =
1

2

[
gβδpβpδ − (n2 − 1)(pγV

γ)2
]
, (1)

where gβδ is the spacetime metric2, xα are the spacetime
coordinates, pα denotes the wave vector, V α is the medium
velocity, and

pγV
γ = −ω(xα, pα)

defines the wave frequency.

Hamilton equations of motion are

dxα

dλ
=

∂H
∂pα

,
dpα
dλ

= − ∂H
∂xα

.

1Synge (1960) 2α, β = 0, 1, 2, 3; t = 0



Dispersive and Refractive Medium 7

The medium is described by n and V α and it is generally
characterized as

Refractive
n ̸= 1

Dispersive
n = n(xα, ω(xα, pα))

In given calculations, cold plasma is typically assumed, while
the applied formalism is more general. General medium
WITHOUT motion was studied by Tsupko (2021).



Cold Plasma Approximation 8

ω

k
≫ vth

Taking

n2 = 1−
ω2
pl(x

α)

ω2(xα)
,

where

ω2
pl(x

α) =
e2

ϵ0me
N(xα)

is the electron plasma frequency, and plugging into (1) gives

H(xα, pα) =
1

2

[
gβδpβpδ + ω2

pl(x
α)
]
.

Light propagation is hence INDEPENDENT of the medium
velocity which appears only in ω(xα) which vanishes.
Note that wave frequency must obey ω(xα) > ωpl(x

α).



Deflection Angle Definition 9

∆φ = 2

∞∫
R

F(r)dr

F given as dφ
dr = F(r)

α = ∆φ− π

Notice difficulties when defining the deflection angle OUTSIDE the
equatorial plane.



Spherically Symmetric Static Object 10

To describe a gravitating object, a spherically symmetric and
static metric is chosen.3 It generally reads

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dϑ2 + sin2 ϑ dφ2),

where A(r), B(r), and C(r) are positive functions.
Additionally, asymptotic flatness is requested, hence for r → ∞

A(r) → 1, B(r) → 1,
C(r)

r2
→ 1.

Furthermore, the medium is assumed to be spherically
symmetric as well, i.e., n = n(r, ω(r)).

3Based on Bezděková et al. (2024).



Rotating Medium 11

The medium which surrounds the compact object can rotate,
which defines its 4-velocity as

V α = (V 0, 0, 0, V φ), V φ = f(r).

The medium velocity is independent of t and the component p0
hence is a constant of motion denoted further as −ω0.
Component V 0 derived from the 4-velocity normalization reads

V 0 =

√
1 + C(r)f2(r)

A(r)
.

The general form of photon frequency in this medium yields

ω(pφ, r) = −p0V
0(r)− pφV

φ = ω0V
0(r)− pφf(r).



Rotating Medium 12

Assuming the equatorial plane (pϑ = 0), the Hamiltonian reads

H(xα, pα) =
1

2

[
p2r

B(r)
+

p2φ
C(r)

− ω2
0

A(r)
+ w(r, ω(pφ, r))

]
,

where4

w(r, ω(pφ, r)) = −[n2(r, ω(pφ, r))− 1]ω2(pφ, r).

Equation of motion for component r yields

ṙ =
∂H
∂pr

=
pr

B(r)
,

and for φ it returns

φ̇ =
∂H
∂pφ

=
pφ
C(r)

+
1

2

∂w

∂ω

∂ω(pφ, r)

∂pφ
.

4In cold plasma w = ω2
pl(r).



Rotating Medium 13

The refractive index can generally be written as

n2(r, ω(pφ, r)) = a0(r) +
a1(r)

ω(pφ, r)
+

a2(r)

ω2(pφ, r)
.

It turns out to be convenient to express the Hamiltonian as

H(xα, pα) =
1

2

[
Aφ(r)p

2
φ + 2Bφ(r)pφ + Cφ(r, pr)

]
,

where Aφ(r), Bφ(r), Cφ(r, pr) are additional functions of r,
eventually of pr. Without the loss of generality it can be
assumed that

Cφ(r, pr) =
p2r

B(r)
+ Cφ1(r).



Deflection Angle - Spherically Symmetric Spacetime 14

Applying the general procedure outlined above leads to the
form of the deflection angle

α = 2

∞∫
R

√
B(r)Aφ(r)

 h2(r)(
Bφ(r)
Aφ(r)

− Bφ(R)
Aφ(R) ± h(R)

)2 − 1


−1/2

dr−π,

where

h2(r) =
1

A2
φ(r)

(
B2
φ(r)−Aφ(r)Cφ1(r)

)
.

Note that the functions Aφ(r), Bφ(r), Cφ1(r) are generally also
functions of constants of motion ω0 and pφ.



Axially Symmetric Stationary Spacetime 15

ds2 =−A(r, ϑ)dt2 +B(r, ϑ)dr2 + 2P (r, ϑ)dtdφ

+ C(r, ϑ)dφ2 +D(r, ϑ)dϑ2

B(r, ϑ) > 0, D(r, ϑ) > 0, A(r, ϑ)C(r, ϑ) + P 2(r, ϑ) > 0
+ dependence on other parameters, e.g., angular momentum a

The corresponding Hamiltonian reads5

H(xα, pα) =
1

2

[
p2r

B(r, ϑ)
+

p2ϑ
D(r, ϑ)

+
p2φA(r, ϑ)− ω2

0C(r, ϑ)

A(r, ϑ)C(r, ϑ) + P 2(r, ϑ)

− 2ω0pφP (r, ϑ)

A(r, ϑ)C(r, ϑ) + P 2(r, ϑ)
+ w(r, ϑ, ω(r, ϑ))

]
.

Further, the equatorial plane is considered, i.e., ϑ = π/2, pϑ = 0.

5For details, see Bezděková & Bičák (2023).



Deflection Angle - Axially Symmetric Spacetime 16

The medium is regarded as static, i.e.,

V α = (V 0, 0, 0, 0),

which leads to

V 0 =
1√
A(r)

,

and then

w(r, ω(r)) = −(n2 − 1)
ω2
0

A(r)
.

Moreover, the refractive index in cold plasma yields

n2 = 1−
ω2
pl(r)

ω2(r)
= 1−

ω2
pl(r)

ω2
0

A(r).



Deflection Angle - Axially Symmetric Spacetime 17

Under the given conditions and after performing the same
procedure as before, one gets

α = 2

∫ ∞

R

√
A(r)B(r)

A(r)C(r) + P 2(r)

 h2(r)(
P (R)
A(R) −

P (r)
A(r) ± h(R)

)2 − 1


−1/2

dr−π,

where
h2(r) =

C(r)

A(r)
n2 +

P 2(r)

A2(r)
.

This is a general formula for the deflection angle in an axially
symmetric stationary spacetime with an arbitrary static dispersive
medium given by its refractive index n.

Notice a formal correspondence with the deflection angle for a
spherically symmetric object in the rotating medium.



Applications of the General Formula 18

For the Kerr metric (in the equatorial plane) it holds

A(r) = 1− 2M

r
, B(r) =

r2

r2 − 2Mr + a2
,

C(r) = r2 + a2 +
2Ma2

r
, P (r) =

−2Ma

r

The deflection angle in cold plasma is6

α = 2

∫ ∞

R

√
r(r − 2M)

r2 − 2Mr + a2


r(r2−2Mr+a2)

r−2M

(
r

r−2M
− ω2

p(r)

ω2
0

)
(

2Ma
r−2M

− 2Ma
R−2M

± h(R)
)2 − 1


−1/2

dr−π,

where

h(R) =

√
R(R2 − 2MR+ a2)

R− 2M

(
R

R− 2M
−

ω2
p(R)

ω2
0

)
.

6Cf. Perlick (2000).



Light Deflection in the Kerr Spacetime 19

Figure 1: Ray trajectories in the vicinity of a Kerr black hole when the light
either co-rotates (left) or counter-rotates (right) with the black hole.



Hartle-Thorne (HT) Metric7 20

ds2 = −
(
1− 2M

r
+

2J2

r4

){
1 + 2P2(cosϑ)

[
J2

Mr3

(
1 +

M

r

)
+

5

8

Q− J2/M

M3
Q2

2

( r

M
− 1
)]}

dt2

+

(
1− 2M

r
+

2J2

r4

)−1{
1− 2P2(cosϑ)

[
J2

Mr3

(
1− 5M

r

)
+

5

8

Q− J2/M

M3
Q2

2

( r

M
− 1
)]}

dr2

+ r2
{
1 + 2P2(cosϑ)

[
− J2

Mr3

(
1 +

2M

r

)
+

5

8

Q− J2/M

M3

〈
2M√

r(r − 2M)
Q1

2

( r

M
− 1
)
−Q2

2

( r

M
− 1
)〉]}

×

{
dϑ2 + sin2 ϑ

(
dφ− 2J

r3
dt

)2
}

7Hartle & Thorne (1968)



Hartle-Thorne (HT) Metric – cont. 21

M – total mass
J – total angular momentum
Q – quadrupole moment
Q1

2(x), Q
2
2(x) – the associated Legendre functions of the second

kind, P2(cosϑ) – the Legendre polynomial of the second order

Let us introduce a compact notation for the following
dimensionless quantities:

A1 = 1− 2M

r
+

2J2

r4
, j =

J2

Mr3
,

K =
5

8

Q− J2/M

M3
, j1 =

2J

r2
,

Q1
2 = Q1

2

( r

M
− 1
)
, Q2

2 =Q2
2

( r

M
− 1
)
.



Relation Between the HT and Kerr Metrics 22

Kerr metric – Q = J2/M (K = 0) and J = −Ma
To derive the corresponding form of the Kerr metric from the
HT metric, one has to apply the transformation (from the
Boyer-Lindquist coordinates)

r → r

[
1− a2

2r2

((
1 +

2M

r

)(
1− M

r

)
− cos2 ϑ

(
1− 2M

r

)(
1 +

3M

r

))]
,

ϑ → ϑ− a2

2r2
sinϑ cosϑ

(
1 +

2M

r

)
.



Deflection Angle in the HT Metric 23

The deflection angle in the HT metric in the cold plasma gives

αHT = 2

∫ ∞

R
fHT (r)dr − π,

where

fHT (r) =

√√√√ AB0

ACP0 −K 2Mr2√
r(r−2M)

Q1
2

×


(
ACP0 −K 2Mr2√

r(r−2M)
Q1

2

)(
1− ω2

p(r)

ω2
0

(
A0 −KQ2

2

))
(A0 −KQ2

2)
2
(PA0(R)− PA0(r)± h(R))

2
− 1


−1/2

,



Deflection Angle in the HT Metric 24

with

A0 = 1− 2M

r
− j,

AB0 = 1,

ACP0 = r2
(
1− 2M

r

)
,

PA0 = −2J

r

(
1 +

2M

r

)
,

h2(R) =
R2
(
1− 2M

R

)(
1− 2M

R − j
)2
(
1−

ω2
p(R)

ω2
0

(
1− 2M

R
− j

))
.



Ray Trajectories – Kerr vs. HT 25

Figure 2: Ray trajectories in the vicinity of the black hole in vacuum
(dash-dotted lines) and cold plasma cases (solid lines). The plasma frequency

was characterized as 10ω2
0

(
M
r

)k
with k = 5/2 (yellow lines) or k = 7/2 (orange

lines). The dashed red circles show position of the radius of the circular photon
orbit. The impact parameters of the rays defined as pφ/ω0 are 2, 5, 8, 10.



Quadrupole Moment Effect 26
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Figure 3: Effect of the quadrupole moment in the HT metric with J =
0.8 on the deflection angle and ray trajectories in plasma. Cold
plasma defined with k = 5/2 was assumed. Ray impact parameter is
equal to 7.



Impact Parameter 27

There is a general straightforward relation between impact
parameter b =

pφ
ω0

and minimal radial distance R given as8

b =
P (R)

A(R)
± h(R) =

P (R)

A(R)
± n

√
C(R)

A(R)
+

P 2(R)

A2(R)
.

E.g., for the HT metric in vacuum when K = 0 it reads

b =
R√

1− 2M
R + 4Ma

R2 − 4M2a
R3 − 2Ma2

R3

.

8See Bezděková & Bičák (2023).



Conclusions 28

▶ The general approach how to obtain the deflection angle
for a compact object surrounded by a refractive medium in
the frame of Hamiltonian formalism was outlined.

▶ Rotating medium was discussed around a spherically
symmetric object.

▶ Static medium was considered to surround an axially
symmetric stationary object.

▶ Ray trajectories in the vicinity of objects described by the
Kerr and HT metrics showed that the plasma presence
causes the rays are less bent than in vacuum.

▶ Presence of the quadrupole moment can lead to both
increase and decrease of the light bending in the vicinity of
a gravitating object.

▶ The general relationship between b and R can be found.
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