

High-angular resolution insights into massive stars

Emma Bordier – bordier@ph1.uni-koeln.de I. Physikalisches Institut, University of Cologne

In collaboration with: A. Frost, H. Sana, W.J de Wit, A. Mérand, F. Peissker, L. Labadie, L. Woglo, A. Matter

Why are they important?

- First Stars and Galaxy formation and evolution
- Nucleosynthesis and feedback
- Supernova and compact objects
- Gravitational waves sources

Why are they important?

- First Stars and Galaxy formation and evolution
- Nucleosynthesis and feedback
- Supernova and compact objects
- Gravitational waves
 sources

Characteristics

0

0

- $M_{\text{init.}} \gtrsim 8 \text{ M}_{\odot}$
- $\tau_{form} \sim 10^5 years$ (Tan et al. 2014)
- $\tau_{life} \sim 10^6 years$
- >90% are found in a multiple system while on the main sequence
- >30-40% are shortperiod close-in systems

(e.g. Sana et al. 2012, 2014, Moe & Di Stefano 2017, Offner et al. 2022)

Multiplicity is a common feature for **most massive** stars

- To understand **when** and **how** multiplicity **is set**, we must look backwards to the star formation history.
- To understand how multiplicity evolves, we should look at different stages across the life of massive stars.

Example of QZ Car (HD 93206)

÷

Example of QZ Car (HD 93206)

•

Multiplicity of young O stars in M17 with, VLTI/GRAVITY

M17 Star-forming region

- In the Carina-Sagittarius spiral arm
- One of the :
 - Closest: 1.68^{+0.13}_{-0.11} kpc O Kuhn+2019
 - Most luminous: $3.6 \times 10^{6} L_{\odot}$

- Youngest: ~1 Myr

- Povich+2007 Hanson+1997
- Star-forming region in our Galaxy

Low radial velocity dispersion $\rightarrow lack$ of short period binaries Sana et al. 2017 \rightarrow good test for the migration scenario

Companion properties \rightarrow Formation mechanisms ?

NOT short-period Separations range from 1.2 to 120 au

0

Results and discussions in Bordier et al. 2022, 2024

0

0

O

Orbital parameters of massive hierarchical triples with +, VLTI/PIONIER

0

Why hierarchical triple systems?

0.

0

0

0

Large fraction of O stars are found in triples (or higherorder multiples) Sana+2014, Offner+2022

- Discriminate between different formation and evolution scenarios
- Place constraints on theoretical models
- Understand the interactions and effects of multiple stars

The following results are submitted - Bordier et al. 2025 subm.

>50% of the triples have $q_{out} > 0.5$

0

i_m=16.6°

0

to observer

 $i_2 > 70^{\circ}$

0

0

+

0

 → the outer companion is more massive than one of the inner components
 → More mass transfer initiated by the tertiary ?

0

52.6d

 $a_{AB}sini_2 \sim 96$ $sini_2 \sim 71 \text{ R}_{\odot}$

 $m_{C} \sim 14-17 M_{\odot}$

 $P_1 = 1.10 d$

 $m_A + m_B \sim 11-13 M_{\odot}$

B

Lack of triples with wide inner periods

0

• Full orbits need to be determined, to have the relative inclinations

Bordier et al. 2025 subm.

^{ONLY ONE massive triple is fully} "interferometric"
Lack of triples with wide inper particular sectors.

The formation of companions

1. Companions can form at different scales through fragmentation

2. Dynamical evolution affecting the binary statistics and evolution.

Von Zeipel-Kozai-Lidov (ZKL) cycles in the

0

0

0

First VLTI/MATISSE observations of the core region of IRS+13 in the vicinity of SgrA*

*⁺The IRS 13 cluster

0

٠

0

2004 NACO L-band

++ IRS 13 stellar content

At least 12 stars in the core region of IRS13 (Paumard et al. 2006)

0

Many early type stars (young stars):

E1: OB supergiant (O5I) E2: WN8 E4: WC9 Maillard et al. 2004

- IMBH of $10^{3-4} M_{\odot}$? (Schodel et al. 2005)
- Strong dust emission whose origin is still under debate

++ Nature of E3: an IMBH or colliding winds? o

preliminary results VLTI/MATISSE Observations

This section contains

unpublished,

0

0

0

0

+

0

0

0

0

>

Quick overview of the data

- Observed during MATISSE technical time in 2023
- UT3 problem

0

- E3 not observed \rightarrow E1 & E2
- \rightarrow Only 3 visibilities and 1 closure phase
- Unstable weather conditions: Seeing ~1.5-2" Coherence time ~2ms.

0

• • + 0 • •

Modelling with, LITPro and PMOIRED

Two parametric tools to fit geometric models to the interferometric observables

 \bigcirc

0

0

0

()

0

0

+

0

Mérand et al. 2022

PMOIRED

0 0

> + \bigcirc

PMOIRED

<u>Geometric model:</u>

 $\chi^2 = 2.12$

0

0

വ

0

Unresolved central star (x,y)=(0,0)T > 25,000K

Surrounded by a Gaussian disk (>90% of the emission) FWHM ~ 30 mas T ~ 550 K

Fully resolved feature that extends above 240 au around the central star

- Dust from an envelope? ٠
- Effects of a stellar disk? ٠

Work done by Lionel Woglo [•] Bachelor thesis 0

From NACO observations HKLM bands

Table 3: Magnitudes and flux densities

	E1		E2	
Band	Magnitude	Flux [Jy]	Magnitude	Flux [Jy]
Η	12.23 ± 0.52	1.11 ± 0.50	12.38 ± 0.55	0.98 ± 0.46
Κ	9.97 ± 0.60	1.03 ± 0.48	9.96 ± 0.60	1.05 ± 0.49
\mathbf{L}	8.60 ± 0.57	0.53 ± 0.19	8.05 ± 0.56	0.88 ± 0.31
Μ	6.99 ± 0.67	1.32 ± 0.54	6.40 ± 0.67	2.06 ± 0.86

PMOIRED

Geometric model:

 $\chi^2 = 1.22$

- Star (unresolved punct) ٠
- + Envelope/ Disk: Gaussian : FWHM = 33 ± 12 mas 90% of the flux
- 2nd star (unresolved punct): • T~20,000K diam~ 8±1 mas $\rho \sim 60 \text{ mas} \rightarrow \tilde{a} \sim 480 \pm 37 \text{ au}$ 3rd star (unresolved punct): ٠ T~20,000K diam~ 7±1 mas $\rho \sim 48 \text{ mas} \rightarrow \tilde{a} \sim 370 \pm 38 \text{ au}$

What does it tell us about E1 and IRS13?

- 0 $\lambda = 4.084 \mu r$
- VLTI/MATISSE observations: it is possible to resolve objects in this region
- Nature of the close environments of E1 & E2 in the larger context of the GC environment
- E1 is an O5I star: >90 % are in multiple systems
- IRS 13 behaves as other massive clusters?
- Are we finally detecting massive binaries in the GC? (Peissker 2024 in press).
- Success of these observations motivates further investigations: ERIS/GRAVITY(+)
- And request observations of E3

0

0

0

Thanks for your attention!

Emma Bordier bordier@ph1.uni-koeln.de

I. Physikalisches Institut, University of Cologne

