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Outline

- What are we looking for?
- Biomarkers, biosignatures

- Future prospects
- And a Kepler mystery



The habitable zone

- Kastings definition?

Remote life-detection criteria, habitable zone
boundaries, and the frequency of Earth-like planets
around M and late K stars

James F. Kasting', Ravikumar Kopparapu, Ramses M. Ramirez, and Chester E. Harman

Department of Geosciences, Pennsylvania State University, University Park, PA 16802
Edited by Adam S. Burrows, Princeton University, Princeton, NJ, and accepted by the Editorial Board October 31, 2013 (received for review May 13, 20

The habitable zone (HZ) around a star is typically defined as the  around other stars by performing remote sensing of the plan
region where a rocky planet can maintain liquid water on its  atmospheres, so to them the biologists” definition of life is
surface. That definition is appropriate, because this allows for the  particularly usetul. Instead, what they need 1s a way to recogi
possibility that carbon-based, photosynthetic life exists on the life from a great distance. It was realized many years ago that
planet in sufficient abundance to modify the planet’s atmosphere  best way to do this is by looking for the byproducts of mete
in a way that might be remotely detected. Exactly what conditions  lism. As carly as 1965, Lederberg (6) suggested that the |
are needed, however, to maintain liquid water remains a topicfor  remote signature of life was evidence for extreme thermc
debate. In the past, modelers have restricted themselves to water-  namic disequilibrium in a planet’s atmosphere (but see critic

Kasting et al., 2013, PNAS: http://www.pnas.org/content/111/35/12641.full.pdf
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Where to look?

« M stars vs. G stars?

- Solar type stars, solar analogues, solar twins or
rather red dwarfs?

- And actually what about exo-moons?
- What are we searching for?



Biosignhature

03 Ozone, produced
by plants, algae

¥

H;0 Liquid water

Intensity

http://www.nasa.gov/missions/deepspace/cyberspace_prt.htm

(= WY
L“’".ﬂ-ﬁl |._- = ;
Methane produced
by living organisms

Wavelength




Some examples

2 02, (O3), N2O
Unique
Generated by Hz, CO3,
geology or H2S, CHy SO2
photochemistry

/ Not rapidly assimilated \
/ Mot highly soluble in ocean

G?. HE. CDE. M?.
Gaseous metabolic byproducts N2O, NO, NO.,
H-S, CHy SO H,0, NH4

All Earth-based metabolic byproducts \ Gases and solids

Sara Seager, Matthew Schrenk, and William Bains. An Astrophysical View of Earth-Based
Metabolic Biosignature Gases. ASTROBIOLOGY Volume 12, Number 1, 2012



Spectrum of Earth



Transmission of Earths atmosphere
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What to expect in terms of
sensitivity needed (the Earth)?



P. Hedelt et al.: The spectral appearance of Earth-like planets
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Fig. 4. Transit depth during primary eclipse (left) and brightness temperature difference with respect to the calculated surface
temperature spectrum during secondary eclipse (right) for the scenarios considered. The spectral resolution is R = 100. Each center
run with R = 3 000 is shown in grey. The geometric transit depth (see Sect. 3.3) 1s indicated by a horizontal line for transmission
spectra. The brightness temperature spectra include the reflected stellar component in the near-IR. Furthermore the bandpass of the
filters considered in this work are shown.

http://arxiv.org/pdf/1302.5516v2.pdf



And hot-Jupiters?



HD189733b - HST
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HD189733b
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Wasp-12b — Rayleigh scattering
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Figure 12. Plotted is the broadband transmission spectral data
compared to 6 different clear atmosphere models (which lack TiO)
listed in Table 5, including Burrows-ExtraAbsorber_10xsolar
(red), Burrows-MetalHydrides_0.01 xH20 (light blue),
Burrows-ExtraAbsorber_10xCO (green), Burrows-
[sothermal3000_0.1xsolar  (brown), Burrows-Isothermal2500
(orchid), and Fortney-Isothermal2250_noTiO (dark blue). All of
these models have a particularly hard time simultaneously fitting
for the near-IR WFC3 and Spitzer data.

Sing et al. 2013, MNRAS, http://arxiv.org/pdf/1309.5261v1.pdf



Wasp-31b (clouds, haze, scattering)

14  D. K. Sing et al.
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Figure 12. Plotted is the broad-band transmission spectral data along with atmospheric models. Two solar-composition models con-
talning a scattering haze are shown from the modeling suits of Burrows et al. (green) and Fortney et al. (blue). Our best fit model is also
plotted (purple) containing a Rayleigh scattering haze, a grey cloud-deck at low pressures, non-pressure broadened Na and K features,
and an obscured HoO feature. The band-averaged model points are indicated with open circles.

Sing et al. 2014, http://arxiv.orqg/abs/1410.7611



And projects for the future?



NGTS

http://www.ngtransits.org/survey.shtml
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- Launch 2017

CHEOPS

- 32cm telescope

Credit: ESA

- http://sci.esa.int/cheops/54032-spacecraft/
- http://cheops.unibe.ch/


http://sci.esa.int/cheops/54032-spacecraft/

CHEOPS

- The main science goals of the CHEOPS mission will be to study the structure of exoplanets with radii
typically ranging from 1-6 REarth orbiting bright stars. With an accurate knowledge of masses and
radii for an unprecedented sample of planets, CHEOPS will set new constraints on the structure and
hence on the formation and evolution of planets in this mass range. In particular, CHEOPS will:

Determine the mass-radius relation in a planetary mass range for which only a handful of data
exist and to a precision never before achieved.

Probe the atmosphere of known Hot Jupiters in order to study the physical mechanisms and
efficiency of the energy transport from the dayside to the night side of the planet.

Provide unique targets for future ground- (e.g. E-ELT) and space-based (e.g. JWST, EChO)
facilities with spectroscopic capabilities. With well-determined radii and masses, the CHEOPS
planets will constitute the best target sample within the solar neighbourhood for such future studies.

Offer up to 10% of open time to the community to be allocated through competitive scientific
review.

ldentify planets with significant atmospheres as a function of their mass, distance to the star, and
stellar parameters. The presence (or absence) of large gaseous envelopes bears directly on
fundamental issues such as runaway gas accretion in the core accretion scenario or the loss of
primordial H-He atmospheres.

Place constraints on possible planet migration paths followed during formation and evolution for
planets where the clear presence of a massive gaseous envelope cannot be discerned.



T 55 Transmng Exuplanet Survey Satelllte

Science
Launch Vehicle Dhsarvatury Instrument

“

* SpaceX Falcon 9 vi.1 « Orbital LEOStar-2 * Four Wide Field-of-View CCD Cameras
» High Earth Orbit (HEQ) * Instrument-in-the-loop attitude contral = 24°x 24 Field-of-View
= 2:1 Resonance with Moon's Orbit = Well defined spacecraft interfaces

Project Overview

= Transiting exoplanet discovery mission

- 2 month Commissioning period
- 2 year all-sky survey (3 year science mission)

- Identifies best targets for follow-up characterization N ﬁ
= Deep Space Network (DSN) primary support

- Category Il, Class C

- Planned Launch Readiness Date: August 2017 Efbifﬂ' ATH
- PI Cost Cap: $228.3 M (RY$) /




TESS

- TESS Is designed to:

Monitor 200,000 nearby stars for planets
Focus on Earth and Super-Earth size planets
Cover 400x% larger sky area than Kepler
Span stellar spectral types of F5 to M5




JWST

- MIRI - mid-IR camera

 NIRI — near-IR camera

- NIRSpec — near-IR spectrograph

- NIRISS — near-IR imager and slitless spectrogr.

- Exoplanets and Solar systém one of the key
themes

- Launch date 2018
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Plato Space mission

Credit: Thales Alenia Space



PLATO Space mission

PLAnetary Transits and Oscillations of stars
Theme: What are the conditions for planet formation and the emergence of life?

Primary Goal Detection and characterisation of terrestrial exoplanets around bright
solar-type stars, with emphasis on planets orbiting in the habitable zone.

Photometric monitoring of a large number of bright stars for the detection of
planetary transits and the determination of the planetary radii (around 2% accuracy)

Ground-based radial velocity follow-up observations for the determination of the
planetary masses (around 10% accuracy)

Asteroseismology for the determination of stellar masses, radii, and ages (up to
10% of the main sequence lifetime)

Identification of bright targets fr spectroscopic follow-up observations of
planetary atmospheres with other ground and space facilities

LAUNCH 2024



PLATO Space mission

- The instrument consists of 32 "normal"
telescopes

- Stars with mV > 8. Two additional “fast” cameras
with high read-out cadence (2.5 s) will be used
for stars with mV ~4-8

- Each camera has an 1100 deg2 FoV and a pupll
diameter of 120 mm and is equipped with a focal
plane array of 4 CCDs each with 45102 pixels of
18 um size



E-ELT - 2024

- EPICS — Exoplanet imagng camera and spectrograph
https://www.eso.org/sci/libraries/SPIE2010/7735-84.pdf
- METIS - The Mid-infrared E-ELT Im. and Spectr. - 3—20 pm
Low-resolution (R < 1,000) at L,M,N
Medium-resolution (R <10,000) at N
High-resolution (R~100,000) IFU at L,M

- HARMONI - is a visible and near-infrared (0.47 to 2.45 pm)
Integral field spectrograph, providing the E-ELT's core
spectroscopic capability, over a range of resolving powers from R
(ENAN) ~500 to R~20000.

https://www.eso.org/public/images/ann15056a/



HARMONI

Credit: ESO




And now some fun at the end



How could aliens look like?
How to see aliens?

- Dyson spheres

- Glant structures around planets and transit light
curve

- How a Moon would be seen in the light curve?

- Life as we know it from the Earth?
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PARTICLES, ENVIRONMENTS, AND POSSIBLE ECOLOGIES
IN THE JOVIAN ATMOSPHERE

CARL SAGAN AND E. E. SALPETER

Center for Radiophysics and Space Research, Cornell University
Received 1975 December 11; revised 1976 June 1

ABSTRACT

The eddy diffusion coefficient is estimated as a function of altitude, separately for the Jovian
troposphere and mesosphere. The growth-rate and motion of particles is estimated for various
substances: the water clouds are probably nucleated by NH,Cl, and sodium compounds are likely
to be absent at and above the levels of the water clouds. Complex organic molecules produced by
the Le photolysis of methane may possibly be the absorbers in the lower mesosphere which
account for the low reflectivity of Jupiter in the near-ultraviolet. The optical frequency chromo-
phores are localized at or just below the Jovian tropopause. Candidate chromophore molecules
must satisfy the condition that they are produced sufficiently rapidly that convective pyrolysis
maintains the observed chromophore optical depth. Organic molecules and polymeric sulfur
produced through H,S photolysis at A > 2300 A probably fail this test, even if a slow, deep
circulation pattern, driven by latent heat, is present. The condition may be satisfied if complex
organic chromophores are produced with high quantum yield by NH, photolysis at A < 2300 A.
However, Jovian photoautotrophs in the upper troposphere satisfy this condition well, even with
fast circulation, assuming only biochemical properties of comparable terrestrial organisms. Unless
buoyancy can be achieved, a hypothetical organism drifts downward and is pyrolyzed. An
organism in the form of a thin, gas-filled balloon can grow fast enough to replicate if (i) it can
survive at the low mesospheric temperatures, or if (ii) photosynthesis occurs in the troposphere.
If hypothetical organisms are capable of slow, powered locomotion and coalescence, they can
grow large enough to achieve buoyancy. Ecological niches for sinkers, floaters, and hunters
appear to exist in the Jovian atmosphere.

Subject headings: planets: atmospheres — planets: Jupiter



Nice reading

- http://www.nature.com/scitable/blog/postcards-
from-the-universe/the curious idea_of jovian

- Carl Sagan - Cosmos


http://www.nature.com/scitable/blog/postcards-from-the-universe/the_curious_idea_of_jovian
http://www.nature.com/scitable/blog/postcards-from-the-universe/the_curious_idea_of_jovian

Sinkers and floaters In Jupiter
atmosphere

- https://www.youtube.com/watch?
v=uakLB7Eni2E



Why are the plants green?



Phosynthesis

6 CO, + EHEG — Cﬁ.H]ED'E. + 60,

Chlorophyll - Credit: Wikimedia Commons
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VEGETATION’S RED EDGE
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FIG. 4. Earthshine observations from APO. Top panel: Earthshine observations on 8 February 2002. The viewing
geometry (including cloud coverage at the time of observations) of Earth from the Moon is shown in the right image
(http: //www.fourmilab.ch/earthview /vplanet html). Middle panel: Same as the top panel for 16 February 2002. The
viewing geometry of Earth includes much more vegetation in the top panel than in the middle panel. Bottom panel:
An absorption spectrum through Earth’s atmosphere from Kitt Peak National Observatory (ftp://ftp.
noao.edu/catalogs/atmospheric/transmission/) smoothed to approximately the same resolution as the APO Earth-
shine data. Note the different y-axis on the absorption spectrum; the spectral features are much deeper than in the
Earthshine spectrum, and there is no red edge feature.

https://www.cfa.harvard.edu/~kchance/EPS238-2012/refdata/Seager-red-edge-2005.pdf
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Different colours of plants?
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Artificial transiting structures

Fig. 1.— Transiting objects: A triangular equilateral object (upper strip) and the best-fit
spherical planet and star (lower strip, same scale as upper strip). The star model for the
triangle transit is HD209458 with limb darkening coefficients u; + uo = 0.64 and uy — us =
—0.055 (Brown et al. 2001). The triangle edge length is 0.280 stellar radius. The object
impact parameter is b = 0.176 (transit center). The best-fit sphere has an impact parameter
of b = 0.19 and a radius of r, = 1.16 Rjypiter. Best-fit star has u; + uy = 0.66, with
1y — o set to zero, and a non-significant radius increase of 0.5%. Fitting object oblateness
f. either with zero or 90° obliquity to maintain lightcurve symmetry, converges to solutions

not significantly different from the case f = 0.

Arnold, 2005, ApJ
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Fig. 3.— Magnitude difference between the transit of a rotating triangular object (same
as shown Fig.1) and the best-fit spherical planet and star. The triangle makes seven turns
on itself during the transit of HD209458 at b = 0.5. The fit gives a transiting sphere of
LI7 Ryypiter at b= 0.51 and a star with uy + uy = 0.67, uy — uy = 0 and R, increased by
1%. Here. the curve is symmetric because the rotating object is in a symmetric position
at transit center with respect to object orbital plane. If it would not be the case, then the
curve would be asymmetric.

Arnold, 2005, ApJ
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panel: difference between the mirmor fleet transit ight curve (P 4+ M) and the
one for a solitary larger planet (LP) that would produce the same depth of
ransit, relative to the stellar intensity, for the same situations.

http://iopscience.iop.org/article/10.1088/0004-637X/809/2/139/pdf
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Kepler star

- Why Is so unique?
- Why caught attention?
- IRREGULARITY
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Figure 2. Fourier transform for KIC 8462852. The peaks are labeled with

the harmonic numbers starting with 1 for the base frequency. Refer to Sec-
tion 2.1 for details.

http://arxiv.org/pdf/1509.03622v1.pdf



KIC 8462852 — Where's the flux? 3
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Figure 1. Montage of flux time series for KIC 8462852 showing different portions of the 4-year Kepler observations with different vertical scalings. The top
wo panels show the entire Kepler observation time interval. The starting time of each Kepler quarter is marked and labeled with a red vertical line in the top
panel “(a)’. Panel “(c)” is a blowup of the dip near day 793, (DB00). The remaining three panels, “(d)", “(e)’, and “(f)", explore the dips which occur during the
90-day interval from day 1490 to day 1580 (DD1500). Refer to Section 2.1 for details. See Section 2.1 for details,

http://arxiv.org/pdf/1509.03622v1.pdf
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Figure 4. Stacked plots showing a zoomed-in portion of the Kepler light
curve. The star’s rotation penied of (.88 d is seen in each panel as the high-
frequency modulation in flux. With the exception of panel ‘c)’, a longer
term (10 -20 day) brightness variation is observed, also present in the FT
shown in Figure 2. Refer to Section 2.1 for details.

tional velocity, and rotation period (Section 2.1), we determine a
stellar rotation axis inclination of 68 deerees.

http://arxiv.org/pdf/1509.03622v1.pdf
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Figure 5. NOT spectrum closeups for KIC 8462852, the best fit stellar
mode ] shown in red. Panels show region near Ho, H 3, Mg, and Na D (top
to bottom). The bottom panel shows both the stellar (broad) and interstellar
(marrow ) counterparts of the Na ) lines. Refer to Section 2.2 for details.
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Figure 6. UKIRT image for KIC 8462852 and another bright star for com-
parison, showing that it has a distinct protrusion to the left (zast). For ref-
erence, the gnd lines in the image are 10" x 10", Refer to Section 2.3 for
details.

Keck AOQ H-band Image

@

KIC 8462852

companion star: 2, dH = 3.8

Figure 7. Keck AD H-band image for KIC 8462852 showing the com-
panion was detected with a 2" separation and a magnitude difference
MAH = 3.8, Refer to Section 2.3 for details.

http://arxiv.org/pdf/1509.03622v1.pdf



Explanations of a Kepler star
mystery?

- Probably a comet which broke apart and now Is

orbiting a star

- Aresult of a collison of large bodies — however
no IR excess observed

- Aliens? - perhaps not, not yet



How would the Earth look from
Space”?



Pale blue dot

http://daleandersen.seti.org/Dale_Andersen/A _Pale_Blue Dot.html







Thank you very much
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