The Galactic Center

Jason Dexter MPE Garching

with slides from R. Genzel, S. Gillessen, O. Pfuhl, G. Ponti, and the MPE GC group (mpe.mpg.de/ir/GC)

ESO/Y. Beletsky

The Galactic Center

1. Evidence for a massive black hole (today) 2. A paradox of youth (16.11) 3. Sgr A* and the faintest black holes (21.11) 4. Compact objects, dark matter, and the high energy GC (23.11) Seminar: strong gravity around Sgr A* (23.11)

Venezuela 💡

Colombia

Ecuador,

Guyana

Suriname/

UC Berkeley

MPE Garching

2003: 40 Jahre MPE

About the lectures

Selected topics: central parsec, highly biased
Please ask questions!

~1 interactive Q / lecture:
 ~10 mins to think/calculate, discuss, share

Further reading: Genzel+2010, Morris+2012, Falcke & Markoff 2013

1. The Galactic Center: overview

Why study the GC?

Black holes in centers of galaxies

• From modeling spatially resolved spectra (Bender, Kormendy, Magorrian, Richstone, Tonry, ...)

GC: best evidence for an MBH

Galaxies and black holes co-evolve

GC: feeding and feedback

• X-ray resolved inflowing gas

 > 99% of gas does not make it to center (Wang+2013)

Physics frontiers of strong GR and dark matter

GC: physics laboratory

- Biggest black hole event horizon on the sky
- Limits on dark matter annihilation

Stellar dynamics and IMF

GC: stellar dynamics around a BH

- IMF in extreme environment
- Tidal interactions between black hole and gas, stars

1. The Galactic center

Evidence for a massive black hole

How to study the GC

More than 30 magnitudes of extinction

The high energy Galaxy

Quasi-stellar objects

• Schmidt 1963

- Lynden-Bell 1969: quasars as huge black holes
- What about the center of our own Galaxy?

The Galactic center

northern arm

eastern arm

mini-spiral

western arc 74" (3 pc) Infrared – Molecular line - Radio

circum-

nuclear

disk

The central parsec

The central parsec in X-rays

Sagittarius A*

• A compact radio source at the very center (Balick & Brown 1974)

Black hole sphere of influence

- Measure: $(x,y), v_z, (v_x, v_y)$
- At what scale do we see effects of a black hole on stars?
- When $M_*(>r) = M_{BH}$:
 - $G M_{BH} / R > \sigma_*^2$
 - $R < GM_{BH} / \sigma_*^2; \sigma_* \sim 100 \text{ km / s}$ R ~ 2 pc (M_{BH} / 4x10⁶ M_{sun})
- Need to go to central parsec to look!

Large gas velocities around Sgr A*

Becklin, Townes, Lacy, Serabyn, Wollman 1977-85

Stars in the Galactic center

Becklin & Neugebauer 1968

Becklin+1978

Galactic center nuclear star cluster

A concentrated dark mass measured from gas and stars

Big telescopes and adaptive optics

VLT

- Diffraction limit: $\vartheta_{min} \sim \lambda/D$
- 8-10m telescopes can resolve ~ 50 mas: in GC ~ 2 mpc!

Keck

without adaptive optics

Motions of stars around Sgr A*

0.5 (1 light month) Eckart & Genzel 1996, 1997, Ghez et al. 1998

The S stars

Enclosed mass from proper motions

Accelerations and the first orbit

Schoedel 2002 (Nature): first orbit 44

The S stars 20 years later

Nuclear cluster : A huge data set

> 10000 proper motions

> 2500 radial velocities

Fritz+ 2014 ⁴⁷

Mass and distance to Sgr A*

We can also locate the mass

SiO maser stars

- IR sources
- radio sources

Sgr A*

radio source

Masers et "large" distances

Positional accuracy

- intrinsic: < mas
- emission from outer atmosphere: up to ~mas

Reid et al. 2007

The mass is < 1 mas from Sgr A*

Most or all of the mass is Sgr A*

 Motion of radio Sgr A* relative to background AGN (Reid & Brunhalter 2004)

 Dashed line: motion of sun through Galaxy

Most or all of the mass is Sgr A*

- Residual: Sgr A* is not moving!
- Radio source: > 10% of central mass

Limits on the density of Sgr A*

- 4.0x10⁶ M_{sun} inside of S2 (Schödel+ 2002, Gillessen+ 2009)
- > 10% of this is Sgr A* (Reid & Brunthaler 2004)
- Sgr A* radio size: ~4 R_s
 (Bower+ 2006, Doeleman+ 2008)

size/radius of event horizon of BH

density: ~10⁻² of black hole

Is Sgr A* a black hole?

Black hole

- Event horizon: $R_s = 2 GM/c^2 = 2 R_g$
- Innermost stable circular orbit: 1-9 R_g
- Circular photon orbit: 1-4 R_g

Black hole shadow Shadow inside photon spheres Size: ~10 R_g

Bardeen (1973); Dexter & Agol (2009)

Q: resolving the BH shadow of Sgr A*

- $R_g = GM / c^2$, $M = 4x10^6 M_{sun}$, D = 8 kpc
- How large is 10 R_g in angular size on sky?
- How large of a telescope do we need to resolve that size at wavelengths of:
 - 1 mm (radio)?
 - 2 micron (IR)?
 - 1 nm (X-ray)?
- Think/calculate, share, then discuss!

Imaging a black hole

- Two new experiments to resolve gas near Sgr A*
- Resolution: 10-100 μas

Event Horizon Telescope

VLTI GRAVITY

Next time: "a paradox of youth"

• How do we get clusters of young stars near a massive black hole?

 Is star formation near a massive black hole the same as elsewhere in the Universe?