The Galactic Center

Jason Dexter MPE Garching

with slides from R. Genzel, S. Gillessen, and the MPE GC group mpe.mpg.de/ir/GC

ESO/Y. Beletsky

The Galactic Center

1. Evidence for a massive black hole (14.11) 2. A paradox of youth (today) 3. Sgr A* and the faintest black holes (21.11) 4. Compact objects, dark matter, and the high energy GC (23.11) Seminar: strong gravity around Sgr A* (23.11)

About the lectures

Selected topics: central parsec, highly biased
Please ask questions!

~1 interactive Q / lecture:
 ~10 mins to think/calculate, discuss, share

Further reading: Genzel+2010, Morris+2012, Falcke & Markoff 2013

About the lectures

 pdf of slides online: mpe.mpg.de/~jdexter/gcslides.html

 Requests for topics: now or e-mail jdexter@mpe.mpg.de

Any other Q's: around after, next Mon/Wed

1. The Galactic Center: evidence for a massive black hole

Recap

Young stars in the central parsec

Sgr A* is a black hole

Resolving an event horizon

- Two new experiments to resolve gas near Sgr A*
- Resolution: 10-100 µas

Event Horizon Telescope

VLTI GRAVITY

2. The Galactic Center

A paradox of youth

Young stars in the central parsec

Stars: O/WR, B, late-type/old

- O/WR: ~50 M_{sun} , T ~ 10 Myr
- B: ~10 M_{sun}, T ~ 100 Myr

- ~200 O/WR stars in GC known
- Central parsec supernova and star formation rate ~5-10% of the entire Galaxy

A clockwise disk of massive O/WR stars

Age: 6 +/- 2 Myr Mass: ~20 M_{sun}

R ~ 0.05-0.5 pc Thick, warped

> Paumard+ 2006 Martins+ 2007 Bartko+ 2009 Bartko+ 2010, Lu+ 2013

A second, counter-clockwise disk?

Top-heavy initial mass function

- Salpeter/Kroupa: dN/dm ~ m^{- α}, α = -2.35
- O/WR disk: α = -0.45 (Bartko+2010) or -1.7 (Lu+2013)

The "S" star cluster is even closer in

O/WR stars

B stars

Currently: ≈ 40 orbits known

Gillessen et al. 2009 Gillessen+ in prep.

The S stars: random orbits

- S stars: "relaxed" cusp with thermal eccentricity distribution
- Old stars: no cusp 100 stellar surface density (stars arcsec⁻²) 24 early-type stars 0.1 10 1.0 Observed Thermal 0.8 0.01 cumulative PDF 0.6 0.001 **B** stars 0.1 0.4 O/WR 0.0001 0.2 0.01 0.0 0.2 0.8 0.0 0.4 0.6 1.0 10 eccentricity distance from SgrA* (arcseconds)

Cartoon version of the stellar system

- S-stars
 - young, 10^8 yr
 - r < 0.05 pc
 - orbits
- Stellar disk
 - younger, 10^7 yr
 - 0.05 pc < r < 0.5 pc</p>
- Old stars
 - everywhere
- and more:
 - stellar black holes
 - neutron stars
 - white dwarfs
 - fainter MS stars

• How long does it take for stellar orbits to change from random scattering with stars?

Assume: δv ⊥ v, δv << v

 How long does it take for stellar orbits to change from random scattering with stars?

- Assume: δv ⊥ v, δv << v
- Impulse:

 $\delta v \sim F/M dt \sim Gm_*/b^2 * b/v \sim Gm_*/bv$

Add up deflections over time t = R / v

Add up deflections over time t = R / v

• # of scatters between b, b+db: = $n_* \sigma R = 2\pi b db n_* v t$

• Random changes to velocity \rightarrow random walk

• $dv^2 \sim \# \text{ of scatters } * \delta v^{2:}$

• Random changes to velocity \rightarrow random walk

dv² ~ # of scatters * δv^{2:}
 dv² ~ (2π bdb n_{*}vt) * (Gm_{*}/bv)²
 = 2π G²m_{*}² n_{*} t / v db/b

• Random changes to velocity \rightarrow random walk

- dv² ~ # of scatters * δv^{2:}
 dv² ~ (2π bdb n_{*}vt) * (Gm_{*}/bv)²
 = 2π G²m_{*}² n_{*} t / v db/b
- Integrate: $\Delta v^2 = 2\pi G^2 m_*^2 n_* t / v \ln(b_{max}/b_{min})$

• Star forgets its original motion when $\Delta v \sim v$:

 $v^{3} = 2\pi G^{2}m_{*} n_{*} t_{2BR} \ln(b_{max}/b_{min})$ $t_{2BR} = v^{3} / 2\pi G^{2}m_{*}^{2} n_{*} \ln(b_{max}/b_{min})$

• Star forgets its original motion when $\Delta v \sim v$:

$$v^{3} = 2\pi G^{2}m_{*} n_{*} t_{2BR} \ln(b_{max}/b_{min})$$

 $t_{2BR} = v^{3} / 2\pi G^{2}m_{*}^{2} n_{*} \ln(b_{max}/b_{min})$

GC: v ~ 100 km/s, n_{*} ~ 10⁶ / pc⁻³,
 b_{max} ~ 1 pc, b_{min} ~ 1 AU

 $t_{2BR} \sim 3 (v / 100 \text{ km/s})^3 (m_*/m_{sun})^2 \text{ Gyr}$

The S stars as a "paradox of youth"

Ghez+ 2003:S2 is youngEisenhauer+ 2005:All S-stars are youngMartins+ 2008:S2 is an ordinary star

Star formation so close to the MBH is impossible

Stars too young to have migrated from further out

Star formation

- Self-gravity must overcome pressure support ("Jeans instability")
- $U_{grav} + U_{int} < 0$: -3/5 G M²/R + ½ M c_s² < 0

Star formation

 Self-gravity must overcome pressure support ("Jeans instability")

• $U_{grav} + U_{int} < 0$: -3/5 G M²/R + ½ M c_s² < 0 8/5 $\pi \rho$ G R_J² = c_s² R_J ~ c_s / $\rho^{1/2}$

 $c_s^2 = \gamma p / \rho$

Star formation

- Self-gravity must overcome pressure support ("Jeans instability")
- $U_{grav} + U_{int} < 0$: -3/5 G M²/R + ½ M c_s² < 0 8/5 $\pi \rho$ G R_J² = c_s² R_J ~ c_s / $\rho^{1/2}$
- corresponding mass for collapse: $M_J = 4/3\pi \rho R_J^3 \sim 100 (T^3 / n)^{1/2} M_{sun}$
- $c_s^2 = \gamma p / \rho$

 ρ, R, c_s

• Stars form in cold, dense gas!

Self-gravity must overcome pressure and rotational support

•
$$U_{grav} + U_{int} + U_{rot} < 0$$

- Self-gravity must overcome pressure and rotational support
- $U_{grav} + U_{int} + U_{rot} < 0$
- Unstable when: $Q = c_s \Omega / \pi G \rho H < 1$

"Toomre Q parameter" < 1 for collapse

- $H = c_s / \Omega$, $\Omega^2 = G M_{BH} / R^3$, $M_d = \pi R^2 H \rho$
- Re-write Q in a nicer way: $c_s \Omega / \pi G \rho H < 1$

- $H = c_s / \Omega$, $\Omega^2 = G M_{BH} / R^3$, $M_d = \pi R^2 H \rho$
- Re-write Q in a nicer way: $c_s \Omega / \pi G \rho H < 1$
- $H/R < M_d/M_{BH}$ or
- $\rho > M_{BH}/\pi R^3$

• Disk must be thin (cold) and massive (dense) to collapse (Paczynski 1978)

- $\rho > M_{BH}/\pi R^3$
- GC: n > 10¹⁰ (R/0.1 pc)⁻³ cm⁻³
- M_d ~ 10⁴ M_{sun}: H/R ~ 0.003

Compare:
 giant molecular clouds
 n ~ 10⁴ cm⁻³

Star formation in the central parsec from a self-gravitating gas disk (Levin & Beloborodov 2003)

- Dense, cold: $M_J \sim 100 (T^3 / n)^{1/2} M_{sun}$ $\sim 1 M_{sun}$ for T = 10 K, n = 10¹⁰ cm⁻³
- Stars grow until they open gaps in the disk
- Expect massive stars \rightarrow top-heavy IMF
- Issues: formation of disk? eccentric, inclined orbits?

An eccentric stellar disk from disrupting a giant molecular cloud

- Gas is tidally heated by interaction with black hole, but stars can form in dense clumps (Bonnell & Rice 2008, Hobbs & Nayakshin 2009)
- T is higher, M_J higher, form massive stars

Forming the S stars

• Cannot form at current locations!

• Why such small radii, steep radial distribution, eccentric orbits?

Q: Hills mechanism and hyper-velocity stars

1. At what radius can a black hole of mass M_{BH} tidally disrupt the binary (M_b , a)?

 Assume one star is ejected: what is its kinetic+potential energy pre-ejection?
 From energy conservation, what final speed can it reach?

Hyper-velocity stars

- Binary disrupted if tidal force stronger than its own gravity:
 - $GM_{BH} M_{b} a / r^{3} > G M_{b}^{2} / a^{2}$

 $r < a (M_{BH} / M_b)^{1/3}$

Hyper-velocity stars

• Energetics of ejected star:

$$-E_0 = \frac{1}{2} m (v + v_b)^2 - G M_{BH} m / r$$

 $-E_f = \frac{1}{2} m v_{inf}^2$

•
$$E_0 = E_f$$
, $G M_{BH} / r \sim v^2$:
 $-v_{inf}^2 = (v+v_b)^2 - G M_{BH} / r \sim (v+v_b)^2 - v^2$
 $\sim 2 v v_b$
 $-v_{inf}^2 \sim 500 (v_b / 50 \text{ km s}^{-1})^{1/2} (1 \text{ mpc/r})^{1/4} \text{ km/s}^{-1}$

'S

Hypervelocity stars are observed!

Brown 2016

Where do the eccentric binaries come from?

Field/nuclear cluster

- O/WR disk
 - Young B stars still part of the disk? (Madigan+2014)
 - Explains anisotropy of hypervelocity stars? (Subr & Haas 2016)

Two paradoxes of youth

O/WR stars

- 6 Myr young
- mean eccentricity 0.35
- disk configuration
- top-heavy IMF

B stars

- typical age 100 Myr
- eccentricities > 0.8
- randomly oriented
- normal IMF

Hills 1998, Perets+ 2007, Genzel+ 2010 48

Bonnell+ 2008, Hobbs+ 2009

Open questions

• O/WR stars

- One disk or two? Separate B star disk?
- -How extreme is the IMF?
- What about the non-disk stars?
- S stars
 - Relaxation mechanism?
 - Originate in the disks? Or further out?
- Missing red giants?

Next time: Sgr A* and the faintest black holes

How can a 4 million solar mass black hole be so faint?