The Galactic Center

Jason Dexter MPE Garching

with slides from R. Genzel, S. Gillessen, and the MPE GC group mpe.mpg.de/ir/GC

ESO/Y. Beletsky

The Galactic Center

1. Evidence for a massive black hole (14.11) 2. A paradox of youth (16.11) 3. Sgr A* and the faintest black holes (today) 4. Outbursts from Sgr A* and the high energy GC (23.11) Seminar: strong gravity around Sgr A* (23.11)

About the lectures

Selected topics: central parsec, highly biased
Please ask questions!

~1 interactive Q / lecture:
 ~10 mins to think/calculate, discuss, share

Further reading: Genzel+2010, Morris+2012, Falcke & Markoff 2013

About the lectures

 pdf of slides online: mpe.mpg.de/~jdexter/GCslides

 Requests for topics: now or e-mail jdexter@mpe.mpg.de

Any other Q's: around after, Wed

2. The Galactic Center: young stars near a massive black hole

Recap

Sgr A* is a black hole

- 4x10⁶ M_{sun} inside of S2 (Schödel+ 2002, Gillessen+ 2009)
- > 10% of this is Sgr A* (Reid & Brunthaler 2004)
- Sgr A* radio size: ~4 R_s (Bower+2006, Doeleman+2008)

density: ~10⁻² of black hole

Cartoon version of the stellar system

- S-stars
 - young, 10^8 yr
 - r < 0.05 pc
 - orbits
- Stellar disk
 - younger, 10^7 yr
 - 0.05 pc < r < 0.5 pc</p>
- Old stars
 - everywhere
- and more:
 - stellar black holes
 - neutron stars
 - white dwarfs
 - fainter MS stars

Two paradoxes of youth

O/WR stars

- 6 Myr young
- mean eccentricity 0.35
- disk configuration
- top-heavy IMF

Bonnell+ 2008, Hobbs+ 2009

B stars

- typical age 100 Myr
- eccentricities > 0.8
- randomly oriented
- normal IMF

Hills 1998, Perets+ 2007, Genzel+ 2010 ⁸

Last time: tidal radius

- Binary a, m; black hole M
- i) Forces: $F_t = F_g$ or GMm a / $r^3 = Gm^2/a^2$
- ii) Energy: W = U_B or

Б

$$\int_{0}^{a} \mathbf{F}_{t} d\mathbf{x} = \int_{0}^{a} \mathbf{F}_{g} d\mathbf{x}$$
$$\rightarrow \mathbf{F}_{t} = \mathbf{F}_{\sigma}$$

3. The Galactic Center

Sgr A* and the faintest black holes

Radio source Sgr A*

Push to higher resolution

- VLBI (VLBA, EVN) observations (Lo, Moran, Krichbaum, Bower, ...)
- Atmosphere changes every ~10-100s

The radio size of Sgr A*

Accretion power

Infalling gas radiates its gravitational energy

Eddington Luminosity

• How bright can accretion be?

$$F_g = F_{rad}$$

GMm_p/r² = L / 4πr² σ_T / c

 $\frac{L_{edd}}{L_{edd}} = 4\pi Gm_{p}cM / \sigma_{T}$ $\frac{L_{edd}}{L_{edd}} \sim 10^{38} \text{ ergs / s (M/M_{sun})}$

Sgr A*: $L_{edd} \sim 10^{45}$ ergs / s $L_{bol} < 10^{37}$ ergs / s

Eddington accretion rate

• What is minimum amount of infalling material to get L?

Maximum L: L = dE/dt = d/dt(mc2) $L = Mdot c^2$

General L: L = ϵ Mdot c²

 ϵ = "accretion efficiency"

Large gas reservoirs in the GC

Stellar winds: black hole fuel

Mdot ~ 10⁻⁴ – 10⁻³ Msun / yr (Martins+2007)

Cuadra +2006, 2008

X-rays from Sgr A*

19

X-rays from Sgr A*

Bondi-Hoyle accretion

• Mdot = $4\pi \rho G^2 M^2 / (v^2 + c_s^2)^{3/2}$

Bondi-Hoyle accretion

- Mdot = $4\pi \rho G^2 M^2 / (v^2 + c_s^2)^{3/2}$
- X-rays:
 n ~ 100 cm⁻³,
 T ~ 10⁷ K
- Winds: v ~ 1000 km / s
- Mdot ~ 10⁻⁵ M_{sun} / yr

Q: Why is it difficult for gas to fall into a black hole?

- Sgr A* Bondi radius ~ 0.1 pc: what is the angular momentum of a circular orbit?
- What fraction of this angular momentum must be lost to reach the event horizon, R ~ 10⁻⁶ pc?
- Or: what eccentricity is needed for orbit from Bondi radius to reach event horizon?

Accretion theory

- Hydrodynamics equations
 - Collisional, "viscous" infalling material
- Approximations:
 - Stationary, axisymmetric $(d_t = d_{\phi} = 0)$
 - Mdot = constant
 - Vertically integrated
 - "Thin" disk H/R << 1, in practice H/R \leq 1

Standard accretion theory

• Mass:

After Blaes (2004)

$$\dot{\mathbf{M}} = \mathbf{4}\pi\mathbf{R}\mathbf{H}
ho\mathbf{v}$$

- Momentum: $ho \mathbf{v} \, \mathbf{d_R v} =
 ho (\mathbf{\Omega^2} \mathbf{\Omega_K^2}) \mathbf{R} \mathbf{d_R p}$
- Angular momentum: $\dot{\mathbf{M}} \mathbf{d}_{\mathbf{R}}(\mathbf{\Omega}\mathbf{R}^2) = \mathbf{d}_{\mathbf{R}}(4\pi \mathbf{R}^2 \mathbf{H} \tau_{\mathrm{R}\phi})$
- Energy:

 $rac{\mathbf{M}}{2\pi
ho\mathbf{R}}\mathbf{T}\,\mathbf{d_Rs}=\mathbf{2RH} au_{\mathrm{R}\phi}\,\mathbf{d_R\Omega}+\mathbf{2F}^-$

Thin disk accretion _{Sur}

- Shakura & Sunyaev 1973)
- Ω = Ω_K, Mdot = constant, cooling is fast, no torque at inner edge (R_i)
- Angular momentum:

 $egin{aligned} \dot{\mathbf{M}} \, \mathbf{d_R}(\mathbf{\Omega R^2}) &= \mathbf{d_R}(4\pi \mathbf{R^2} \mathbf{H} au_{\mathrm{R}\phi}) \ \dot{\mathbf{M}}(\mathbf{\Omega_K} \mathbf{R^2} - \mathbf{\Omega_{K,i}} \mathbf{R_i^2}) &= 4\pi \mathbf{H} \mathbf{R^2} au_{\mathrm{R}\phi} \end{aligned}$

• Energy:

 $rac{\dot{\mathbf{M}}}{2\pi
ho\mathbf{R}}\mathbf{T}\,\mathbf{d_Rs}=\mathbf{2RH} au_{\mathrm{R}\phi}\,\mathbf{d_R}\mathbf{\Omega}+\mathbf{2F}^-$

 $\mathbf{F}^{-} = -\mathbf{R}\mathbf{H} au_{\mathbf{R}\phi}\mathbf{d}_{\mathbf{R}}\mathbf{\Omega}_{\mathbf{K}}$

Shakura &

Thin disk accretion Sunyaev 1973) Solve for flux emerging from disk, F⁻

 $\dot{\mathbf{M}}(\mathbf{\Omega}_{\mathbf{K}}\mathbf{R}^{2}-\mathbf{\Omega}_{\mathbf{K},\mathbf{i}}\mathbf{R}_{\mathbf{i}}^{2})=4\pi\mathbf{H}\mathbf{R}^{2}\mathbf{\tau}_{\mathbf{R}\phi}$

 $\mathbf{F}^{-}=-\mathbf{R}\mathbf{H} au_{\mathbf{R}\phi}\mathbf{d}_{\mathbf{R}}\mathbf{\Omega}_{\mathbf{K}}$

• $\Omega_{\kappa}^2 = GM/R^3$, $d_R\Omega_{\kappa} = -3/2 \Omega_{\kappa}/R$:

 $\mathbf{F}^{-}(\mathbf{r}) = rac{\mathbf{3}\mathbf{G}\mathbf{M}\mathbf{\dot{M}}}{\mathbf{8}\pi\mathbf{R}^{\mathbf{3}}}\left(\mathbf{1}-\sqrt{rac{\mathbf{R}_{\mathrm{in}}}{\mathbf{R}}}
ight)$ $\mathbf{F} = \mathbf{2} \int_{\mathbf{R}}^{\infty} \mathbf{d}\mathbf{R} \, \mathbf{2}\pi \mathbf{R} \, \mathbf{F}^{-}(\mathbf{R})$

- Thin disk accretion Shakura & Shakura & Sunyaev 1973)
- Solve for total luminosity integrated over disk:

$$\begin{split} \mathbf{L} &= 2 \int_{\mathbf{R}_i}^\infty d\mathbf{R} \, 2\pi \mathbf{R} \, \mathbf{F}^-(\mathbf{R}) \\ \mathbf{L} &= \frac{\mathbf{G} \mathbf{M} \mathbf{\dot{M}}}{2\mathbf{R}_i} \end{split}$$

- R_i ~ innermost stable circular orbit of a black hole = 6 GM/c² for spin zero
- L ~ 10% Mdot c²!
- Compare: nuclear fusion ~ 0.1% Mdot c²

Thin disk accretion

Shakura & Sunyaev 1973)

- opt. thick, so $F^{-}(R) = \sigma T_{eff}(R)^{4}$
- R ~ M, mdot = Mdot c^2 / L_{edd}
- T_{eff}(r) ~ mdot^{1/4} M^{-1/4} r^{-3/4}
- Stellar black holes in X-rays, AGN in UV

Sgr A* spectrum

Radio: Balick & Brown 1974

mm: Zylka & Mezger 1988

NIR/X-ray: Genzel+2003; Ghez+2004; Baganoff+2001

X-ray: Baganoff 2003

Thin disks don't work for Sgr A*

- Thin disk:
 L ~ 10⁵ too bright;
 spectrum should peak
 in IR not submm
- If Mdot ~ Bondi, $\varepsilon = L / Mdot c^2 ~ 10^{-5}!$
- Why is Sgr A* so faint?

Standard Accretion Theory

- ADAF (Narayan & Yi 1994, also Ichimaru 1977, Rees+1982)
 - Parameterize fraction of local heating advected:
 - f=0: $\Omega = \Omega_{K}$, thin disk
 - f=1: Ω = 0, spherical (Bondi) accretion
 - Self-similar scalings like spherical accretion: $ho, \mathbf{\Omega} \propto \mathbf{R^{-3/2}}; \ \mathbf{v}, \mathbf{c_s} \propto \mathbf{R^{-1/2}}$
 - Low density, "collisionless," →
 different proton and electron temperatures!

Standard Accretion Theory

Standard Accretion Theory

Accretion Flow Models of Sgr A*

- Spherical (Melia 1992)
 ADAF (Narayan+1995)
 - $dM/dt \approx dM/dt_{Bondi}$
 - Lower T_e, large central density (n ~ r^{-3/2})
- Accretion energy is carried into the black hole!

Polarization, Faraday rotation, and the Sgr A* accretion rate

n(r), B(r)

• Magnetic field rotates polarization direction $\chi(v) \sim v_0 + RM \ c^{2/v^2}$ $RM \simeq 2.6 \times 10^{-13} \int dl \cdot B \ n \ rad/m^2$

Polarization, Faraday rotation, and the Sgr A* accretion rate

- RM ~ M⁻² Mdot^{3/2} (Marrone et al. 2006)
 - $\dot{M} \simeq 10^{-9} r_{
 m NR}^{7/6} M_{\odot} {
 m yr}^{-1}$ r ~ 1-100 R_s
- > 99% of the mass doesn't make it! (Aiken+2000, Agol 2000, Quataert & Gruzinov 2000, Bower+2003, Marrone+2006,2007)

Sgr A* e- temperature

- For known flux, angular size "brightness" temperature is $B_v(T_b) = I_v$
- Sgr A* at 230 GHz: $T_{b} = \frac{c^{2}I_{\nu}}{2k\nu^{2}}$ $\simeq 6 \times 10^{10} \text{K}$ cf. $T_{i} \approx T_{\text{vir}} \approx 10^{12} \text{ K}$ • Lower limit to $T_{e'}$
 - >> 10⁹ K in ADAF

Accretion flow models of Sgr A*

- Outflows → ADIOS (Blandford & Begelman 1999)
- Convection → CDAF (Quataert & Gruzinov 2000)
- ADAF/CDAF/ADIOS/ ... \rightarrow RIAF!
 - Mass loss!
 - Non-thermal e- or jet for polarization

Yuan et al. (2003)

Why is Sgr A* so faint?

	Radius (Rs or pc)	Accretion rate (M _{sun} / yr)	Accretion efficiency
Giant molecular clouds	10-100 pc	10-2	10 ⁻⁸
Circumnuclear disk	1-7 pc	10-3	10-7
Winds from massive stars	< 0.5 pc ~ 10 ⁶ R _s	10 ⁻⁴ – 10 ⁻³	10 ⁻⁶ – 10 ⁻⁷
Winds at Bondi radius	< 0.1 pc ~ 10 ⁵ R _s	10 ⁻⁵	10 ⁻⁵
Inner accretion flow	1-10 ³ R _s	10 ⁻⁹ – 10 ⁻⁷	10-1 - 10-3

Sgr A* is faint because

• Gas supply (stellar winds) is not large enough

• A tiny fraction of gas supplied reaches the black hole!

• The accretion flow is inefficient at radiating away its gravitational binding energy

How does gas fall into a black hole?

 Weakly magnetized gas: field is dragged along, restoring force when stretched (torque!)

The MRI can cause accretion Instability → turbulence, stresses → torque

McKinney & Blandford 2009

MHD simulations of BH accretion

- Good: physical theory of accretion!
- Bad: turbulence, magnetic fields, timedependence, 3D → numerical simulations
- Still missing: plasma physics

Sgr A* is a great laboratory for MRI accretion theory

Next time:

Has Sgr A* always been so faint?