The Galactic Center

Jason Dexter MPE Garching

with slides from R. Genzel, S. Gillessen, G. Ponti, and the MPE GC group mpe.mpg.de/ir/GC

ESO/Y. Beletsky

The Galactic Center

1. Evidence for a massive black hole (14.11) 2. A paradox of youth (today) 3. Sgr A* and the faintest black holes (21.11) 4. Outbursts from Sgr A* and the high energy GC (23.11) Seminar: strong gravity around Sgr A* (23.11)

About the lectures

Selected topics: central parsec, highly biased
Please ask questions!

~1 interactive Q / lecture:
 ~10 mins to think/calculate, discuss, share

Further reading: Genzel+2010, Morris+2012, Falcke & Markoff 2013

About the lectures

 pdf of slides online: mpe.mpg.de/~jdexter/gcslides.html

 Requests for topics: now or e-mail jdexter@mpe.mpg.de

Any other Q's: around after

The Galactic Center: Sgr A* and the faintest black holes

Recap

Sgr A* quiescent spectrum

v [Hz]

Sgr A* and normal black holes

- $L/L_{edd} \sim 10^{-8}$ compared to ~1 for AGN
- Why?
 - Gas supply from stellar winds \rightarrow ADAF/RIAF
 - > 99% of the gas does not reach the black hole!
 - Gas is hot, opt. thin: inefficient radiator
- Most black holes, most the time

Resolving an event horizon

- Two new experiments to resolve gas near Sgr A*
- Resolution: 10-100 µas

Event Horizon Telescope

VLTI GRAVITY

A black hole image

4. The Galactic Center

Outbursts from Sgr A* and the high energy GC

G2: real time accretion experiment

 A gas cloud on its way to (and past) Sgr A* (Gillessen+ 2011, 2013, Pfuhl+ 2015)

The radial orbit of G2

12

Position – velocity diagrams

The tidal disruption of G2

 A gas cloud on its way to (and past) Sgr A* (Gillessen+2011, 2013, Pfuhl+2015)

Position

A gas stream or star+wind?

stellar wind debris	disrupting disk	windy star	collisional debris	dust-enshrouded star / binary
Gillessen et al. 2012/3ab	Murray-Clay & Loeb 2012	Scoville & Burkert 2013	Miralda- Escude 2012	Eckart et al. 2013
Pfuhl et al. 2015		Ballone et al. 2014	Guillochon et al. 2014	Valencia-S. et al. 2015
Schartmann et al. 2012		De Colle et al. 2014		Witzel et al. 2014
Burkert et al. 2012	nova			Prodan et al. 2014
Shcherbakov 2013	Meyer & Meyer-H. 2012			
				15

Missing: G2 interaction with the accretion flow

G2 as probe of accretion flow

- No radio emission from bow shock
- No "drag" on G2 (Plewa+ in prep)
- n < 10³ cm⁻³ at R ~ 1000 R_s
- Mass lost at large radius?

Infrared/X-ray flares from Sgr A*

 Sgr A*: rapidly variable IR/X-ray emission (Baganoff+2001, Genzel+2003, Ghez+2004)

Flares: particle heating vs. G2: accretion

Electron heating near black holes

 Shock acceleration (jet? tilted disk?) or magnetic reconnection (corona?)

IR flares are synchrotron radiation

Eckart+2006, 2008

X-ray flare radiation mechanisms

v [Hz]

Particle heating and cooling

- Why would synchrotron X-rays have a break?
- Synchrotron radiation:

$$-n(Y) \sim Y^{-p}, F_{v} \sim v^{-(p-1)/2}$$

- Electron energy evolution (Blumenthal & Gould 1970):

$$\begin{split} \frac{\partial \mathbf{n}(\boldsymbol{\gamma},\mathbf{t})}{\partial \mathbf{t}} &= \mathbf{Q} - \frac{\partial(\dot{\boldsymbol{\gamma}}\mathbf{n})}{\partial\boldsymbol{\gamma}} - \frac{\mathbf{n}}{\mathbf{t}_{\mathrm{esc}}}\\ & \text{heating cooling escape}\\ \text{Cooling:} \quad \dot{\boldsymbol{\gamma}} &= -\boldsymbol{\gamma}/\mathbf{t}_{\mathrm{cool}} \sim -\boldsymbol{\gamma}^{\mathbf{2}}\\ \mathbf{t}_{\mathrm{cool}} \sim \boldsymbol{\gamma}^{-1}\mathbf{B}^{-\mathbf{2}} & \text{Cooling fast at X-}\\ & \mathrm{rays, ~slow in IR!} \end{split}$$

Particle acceleration and cooling

 $\begin{array}{l} - \text{ Electron energy evolution} \\ \text{(Blumenthal & Gould 1970):} \\ \frac{\partial \mathbf{n}(\gamma, \mathbf{t})}{\partial \mathbf{t}} = \mathbf{Q} - \frac{\partial (\dot{\gamma} \mathbf{n})}{\partial \gamma} - \frac{\mathbf{n}}{\mathbf{t}_{\mathrm{esc}}} \end{array}$

Steady state, no cooling:

 $n(\gamma) = Q t_{esc}$

Particles heat until they escape;
 input e- spectrum → output IR spectrum

Particle acceleration and cooling

 $\begin{array}{l} - \text{ Electron energy evolution} \\ \text{(Blumenthal & Gould 1970):} \\ \frac{\partial \mathbf{n}(\gamma, \mathbf{t})}{\partial \mathbf{t}} = \mathbf{Q} - \frac{\partial (\dot{\gamma} \mathbf{n})}{\partial \gamma} - \frac{\mathbf{n}}{\mathbf{t}_{\mathrm{esc}}} \end{array}$

Steady state, rapid cooling:

look for solution n ~ γ^{-s} :

$$\mathbf{Q}\sim rac{\dot{\gamma}\mathbf{n}}{\gamma}$$
 or $\mathbf{n}(\gamma)\sim \mathbf{Q}/\gamma$

 \rightarrow "Cooling break" in spectrum between IR, X-rays

Evidence for synchrotron X-rays

Simultaneous IR/X-ray spectra

Even stronger evidence!

28

What do flare motions look like?

Hotspot (Hamaus+2009)

orbiting hotspot flare

Shock (Dexter & Fragile 2013)

shock heating flare

What do flare motions look like?

Vincent+2014

What will GRAVITY see?

XMM-Newton view of the GC

Giant molecular clouds

1 deg ~ 100 pc

Sgr A*

Ponti+2015

Hard X-rays from giant molecular clouds

35

Possible origins?

 Clouds are cold, Fe Kα is excited by X-ray irradiation

 $L_X \sim 10^{39} \text{ ergs / s} \sim 10^3 L_{\text{Sgr A}*} \sim L_{\text{edd}} \text{ for 10 M}_{\text{sun}}$

Signal is time variable!

How can a super-luminal echo happen?

Velocity observed on the screen 1m/1s

Wall distant 1 m

e.g. Ponti +10;+13

How can a super-luminal echo happen?

Past Sgr A* activity?

NuSTAR spectrum supports reflection

 $L_{Sgr A^*} \sim 10^{39} \text{ erg s}^{-1} \sim 1-3 \times 10^2 \text{ years ago}$

Why would Sgr A* be so much brighter?

- Spike of high Mdot (cold clump)
- Tidal disruption (every ~10³-10⁴ years)
- Giant flare?

The Fermi Sky

The Fermi Bubbles

Q: The Fermi Bubbles

- X-ray gas: T ~ 4x10⁷ K; what is thermal speed? (k ~ 1.38x10⁻¹⁶ erg / K, mp ~ 1.67x10⁻²⁴ g)
- Height ~ 10 kpc; what is age? (kpc ~ 3.1x10²¹ cm)

 Total E ~ 10⁵⁵ erg; what is minimum luminosity to power the bubbles?

Q: The Fermi Bubbles:

- v ~ (3kT / m_p)^{1/2} ~ 1000 km / s
- T ~ H/v ~ 10 Myr
- $L_{inj} \sim E/T \sim 10^{40} 10^{43} \text{ ergs} / \text{s} \sim 10^{3-6} L_{Sgr A^*}$

 Requires SFR ~ 0.1-1 M_{sun} / yr (GC total ~ 0.05 M_{sun} / yr) or Sgr A* outflow Mdot c² ~ 10⁻⁵ – 10⁻² L_{edd}

Was Sgr A* an AGN?

Cen A

8

Or was the Milky Way a starburst?

M82

Sgr A*'s recent activity

The Fermi GeV excess

Hooper & Linden 2011, Boyarsky+, Chernyakova+

Uncovering a gamma-ray excess at the galactic center

Unprocessed map of 1.0 to 3.16 GeV gamma rays

Known sources removed

Dark matter signal from GC?

Dark matter can explain the excess

- From NFW profile ~3x10⁷ M_{sun}
- "naive" cross section matches luminosity and morphology

Pulsars produce GeV gamma rays

54

Pulsars can also explain the excess

- Millisecond pulsars: faint, blur into "diffuse" emission, ~2000 to explain excess (Weniger+)
 - Galactic bulge from disrupted globular clusters? (Koscis+)
- Young pulsars

 (O'Leary+2015,2016):
 Need ~100, still faint and diffuse emission

