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Lecture 1 (14.12.16) :

The standard model of cosmology (SMoC) and the arguably greatest question
of 20th/21st century physics : Do the postulated dark matter particles exist ?

Lecture 2 (21.12.16) :

Further on dynamical friction : evidence for merging galaxies.
Galaxy populations.

Lecture 3 (04.01.17) :

Structures on large scales and performance of the SMoC;
Correlations in the properties of galaxies I : Galaxies are simple systems.

Lecture 4 (11.01.17) :

Correlations in the properties of galaxies II.
Evidence for a new law of nature : space-time scale-invariant dynamics.
Some steps towards a deeper theoretical understanding.




Remember:

Distribution of matter on 100kpc, 3Mpc, 8 Mpc and 800Mpc scales
=> incompatibility with SMoC.

Evidence for anisotropies (SNIa-based cosmological solutions, galaxy
morphology distribution, GRB distribution, CMB anomalies)
=> incompatibility with SMoC.

Theory confidence graph based on >29 failures
=> reject SMoC with >99.9968 per cent confidence .

How to proceed?: 1. It seems reasonable to assume the SMoC is falsified.
2. Study the vastly dominant galaxy population (disk
galaxies) to hopefully infer the effective laws of nature

relevant for cosmology.

Disk galaxies: a) Exponential disks.

b) Strong correlations between stellar mass and radius,

gas mass.
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Continue with properties of disk galaxies :




The main sequence of galaxies :

a strong correlation between stellar mass and the SFR of the galaxy.

Remember: >90% of all galaxies locally and 6 Gyr ago
with stellar mass > 10'° M, are star-forming disk galaxies.
These lie on a "main sequence":

logo(SFR) = alogy(M,) + B

a,B are constants, which depend on the redshift z

Speagle, Steinhardt, Capak, Silverman 2014
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log,o(SFR) = a(t)logy (M) + B(t)
log,o(SFR) = [0.84 £ 0.02 — 0.026 £ 0.003 X t]logyo(M.) —
(note the small scatter !)

[6.51 +£0.24 — 0.11 4 0.03 x ¢]

log SFR (M_solar/yr)

Speagle, Steinhardt, Capak,
Silverman 2014

11.0

98 10.0 10.2 104 10.6 10.8

log Mass (M_solar)

Fic. 8. Several of our “consensus™ MS relations taken from our best fit to observations from the literature (see §5.1) plotted at several
given redshifts. The widths of the distributions are taken to be the “true” scatters (£0.2dex) rather than the likely observed scatters
(~ 0. 3dcx) for improved clarity, and the mass bounds are taken directly from the fit. The changing MS slope and ~ 2 orders of magnitude
evolution in SFR at fixed mass from 2 = 4 to 0 are easily visible. As the first and last 2Gyrs of data are not included in the fit, the
z =0 and z = 4 slopes should be viewed as predictions of high-/low-2 MS relations rather than simply best fits to data available at those
redshifts (which would tend to fit well by default). 10
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log;,(SFR) = a(t) log;o(M.) + B(t)
EoglO(SFR) = [0.84 + 0.02 — 0.026 £ 0.003 x t]log;o(M.) — [6.51 £0.24 — 0.11 £ 0.03 x tD
(note the small scatter !)

How does this fit with the stochastic haphazard merger-
driven buildup of galaxies following the merger tree

in the standard (dark matter) model ?

Problems :

a) Write down an equation for the main sequence of galaxies in terms of the galaxy- wide star formation
rate, SFR, and the mass in stars of the galaxy, M, and with the two parameters o and .

b) Assuming the two parameters a,f to be constants of time and mass and taking SFR = dM,/dt , how

does the stellar mass of a galaxy evolve over time if a galaxy is on the main sequence ? Assume no
limitations on the accreted gas reservoir.

Pavel Kroupa: Praha Lecture 4

Disk galaxies thus obey strong correlations between their
stellar masses, gas masses, their radii,
and (surprisingly), their SFRs!

Disk galaxies also obey a very strong correlation between their
baryonic (stellar + gas) mass and the rotation speed of
the flat (and extended) part of their rotation curve ...




The observational Baryonic Tully -Fisher Relation (BTFR)
Famaey & McGaugh 2012

The observational Baryonic Tully -Fisher Relation (BTFR)

Bayesian inference from the K-band luminosity function 37

Curvature in SMoC
models because accretion
of gas onto galaxy
is governed by the
DM halo :

massive DM halo
==> fast/hot accretion

10810 Vina/km s7!

low-mass DM halo
==> slow/cold accretion
==> "inefficient"
galaxy formation

8 9 10 11 8 9 10 11 8 9 10 11 Observed BTF linear
—— 9
logM./Me > no DM halos ?

Figure 4. The stellar mass
compared with data from
the observational data given by Dullun et al

ion prcdmled by 8 models randomly selected from the posterior
' in the upper-left panel. The red line denotes a fit to
201 ). 14




The observational Baryonic Tully -Fisher Relation (BTFR)

& Famaey & McGaugh 2012
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The low-mass end of the baryonic Tully-Fisher relation

Laura V. Sales,'* Julio F. Navarro,’t Kyle Oman,” Azadeh Fattahi,” Ismael Ferrero,**
Mario Abadi,>* Richard Bower,” Robert A. Crain,® Carlos S. Frenk,” Till Sawala,’
Matthieu Schaller,” Joop Schaye,® Tom Theuns’ and Simon D. M White’

ABSTRACT

The scaling of disc galaxy rotation velocity with baryonic mass (the ‘baryonic Tully-Fisher’
relation, BTF) has long confounded galaxy formation models. It is steeper than the M «

V2 scaling relating halo virial masses and circular velocities and its zero-point implies that
galaxies comprise a very small fraction of available baryons. Such low galaxy formation
efficiencies may, in principle, be explained by winds driven by evolving stars, but the tightness

of the BTF relation argues against the substantial scatter expected from such a vigorous
feedback mechanism. We use the ArosTLE/EAGLE simulations to show that the BTF relation is

well reproduced in Acold dark matter (CDM) simulations that match the size and number of
galaxies as a function of stellar mass. In such models, galaxy rotation velocities are proportional

to halo virial velocity and the steep velocity-mass dependence results from the decline in
galaxy formation efficiency with decreasing halo mass needed to reconcile the CDM halo

mass function with the galaxy luminosity function. The scatter in the simulated BTF is
smaller than observed, even when considering all simulated galaxies and not just rotationally 9
supported ones. The simulations predict that the BTF should become increasingly steep at the
faint end, although the velocity scatter at fixed mass should remain small. Observed galaxies
with rotation speeds below ~40km s~! seem to deviate from this prediction. We discuss
observational biases and modelling uncertainties that may help to explain this disagreement
in the context of ACDM models of dwarf galaxy formation.

17

It 1s unfortunately the case that these teams
appear re-invent reality too "fit" their models.




The observational Baryonic Tully -Fisher Relation (BTFR)
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Figure 7. Comparison between predicted and observed baryonic Tully—
Fisher relations, extended to include fainter galaxies than in Fig. 4. Grey
symbols indicate the observed pilation, from ref listed in the
legend. Velocities are now defined at r,. the outermost point of the observed
rotation curve given in Fig. 6 (or its maximum value, when the two do not
coincide). Median values of maximum velocity at given baryonic mass for
i d galaxies are indicated by the thick solid line labelled *Viy,,". Small
dots indicate the predicted velocities of simulated galaxies measured at the
Fou based on the best power-law fit to the observed sample (see green line
in Fig. 6). The shaded areas correspond to the interquartile velocity range
at a given fixed baryonic mass for the simulated (red) and observed (grey)
samples. As expected from Fig. 6, Vo(rou) underestimates the maximum
velocity in low-mass galaxies by a factor of ~1.5. Note as well that the
simulated BTF shows a clear steepening in mass at the faint end that is less
pronounced in the observed BTFE. The observed BTF also has substantially
larger scatter at the faint end, with 2 number of clear outliers with no
counterparts in the simulated sample (see the text for more details).

The theoretical BTFR thus has too much scatter at high-mass end
(at low mass end the observational data have significantly larger
observational uncertainty and thus an apparently larger scatter)

and

the theoretical BTFR has curvature.

The observed rotation curves also do not
match the theoretical ones.

20

(Wu & Kroupa 2015)




The rare elliptical galaxies also follow similar correlations between
stellar mass, radius, mass-to-light ratio, age of stellar population,

velocity dispersion (the Faber-Jackson Relation)
(e.g. Dabringhausen et al. 2008).
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The rare elliptical galaxies also follow similar correlations between
stellar mass, radius, mass-to-light ratio, age of stellar population,

velocity dispersion (the Faber-Jackson Relation)
(e.g. Dabringhausen et al. 2008).

A&A 581, A8 (2015) Astronomy
DOL: 10.1051/0004-6361/201526879 7
© ESO 2015 Astrophysws

The HI Tully-Fisher relation of early-type galaxies

Milan den Heijer!2*, Tom A. Oosterloo®#, Paolo Serra®, Gyula L. G. J6zsa®"!, Jiirgen Kerp!,
Raffaella Morganti“, Michele Cappel].an’s, Timothy A. Davis’, Pierre-Alain Duc'?,
Eric Emsellem!!, Davor Krajnovié!2, Richard M. McDermid'* !4, Torsten Naab'?,
Anne-Marie Weijmans'6, and P. Tim de Zeeuw'!:!”

ABSTRACT

We study the H1 K-band Tully-Fisher relation and the baryonic Tully-Fisher relation for a sample of 16 early-type galaxies, taken from
the ATLAS?" sample, which all have very regular H1 disks extending well beyond the optical body (25 R.q). We use the kinematics
of these disks to estimate the circular velocity at large radii for these galaxies. We find that the Tully-Fisher relation for our early-type
galaxies is offset by about 0.5-0.7 mag from the relation for spiral galaxies, in the sense that early-type galaxies are dimmer for a
given circular velocity. The residuals with respect to the spiral Tully-Fisher relation correlate with estimates of the stellar mass-to-
light ratio, suggesting that the offset between the relations is mainly driven by differences in stellar populations. We also observe
a small offset between our Tully-Fisher relation with the relation derived for the ATLAS®P sample based on CO data representing
the galaxies’ inner regions (S1 R.y). This indicates that the circular velocities at large radii are systematically 10% lower than those
near 0.5-1 R.g, in line with recent determinations of the shape of the mass profile of early-type galaxies. The baryonic Tully-Fisher
relation of our sample is distinctly tighter than the standard one, in particular when using mass-to-light ratios based on dynamical
models of the stellar kinematics. We find that the early-type galaxies fall on the spiral baryonic Tully-Fisher relation if one assumes
M/Lg = 0.54 M,/ L, for the stellar populations of the spirals, a value similar to that found by recent studies of the dynamics of spiral
galaxies. Such a mass-to-light ratio for spiral galaxies would imply that their disks are 60-70% of maximal. Our analysis increases
the range of galaxy morphologies for which the baryonic Tully-Fisher relations holds, strengthening previous claims that it is a more
fundamental scaling relation than the classical Tully-Fisher relation.
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The rare elliptical galaxies also follow similar correlations between
stellar mass, radius, mass-to-light ratio, age of stellar population,

velocity dispersion (the Faber-Jackson Relation)
(e.g. Dabringhausen et al. 2008).

12_Oden Heijer, Oosf[erloo et al. 20|15, A&A
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Fig. 11. Baryonic TFR where the galaxy masses for our sample galaxies are estimated using M/Ljsy. The red symbols represent our ATLAS??
sample, the black symbols are the data from Noordermeer & Verheijen (2007), while the open symbols show the data from McGaugh (2012) for
gas-dominated galaxies. For the data from Noordermeer & Verheijen (2007) in the left-hand panel M/Lk = 0.8 M/ L. was used, as in the original
Noordermeer & Verheijen (2007) paper, while in the right-hand panel M/Lx = 0.54 M;/L, was used. The scaling of the lefthand figure is the
same as that of Fig. 7 to facilitate easy comparison. 23

The rare elliptical galaxies also follow similar correlations between
stellar mass, radius, mass-to-light ratio, age of stellar population,

velocity dispersion (the Faber-Jackson Relation)
(e.g. Dabringhausen et al. 2008; 2016).

Galaxies thus obey a very strong correlation between the internal
radial acceleration and the "mass-discrepancy" ...

The clue to an extension of the law of gravity ?

24




Mass-Discrepancy correlation with acceleration

The Sanders-McGaugh correlation Sanders 1990; McGaugh 2004

Famaey & McGaugh 2012
(Kroupa 2012, 2015)

Vi =
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Mass-Discrepancy correlation with acceleration

Sanders 1990; McGaugh 2004
Famaey & McGaugh 2012
(Kroupa 2012, 2015)
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Mass-Discrepancy correlation with acceleration

- Sanders 1990; McGaugh 2004
- . " . R . Famaey & McGaugh 2012
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Mass-Discrepancy correlation with acceleration

SMoC McGaugh 2014
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Fig. 3. The mass discrepancy-acceleration relation. The ratio of dynamical to baryonic mass is shown at each
point along rotation curves as a function of the centripetal acceleration at that point. The top panel shows model
galaxies in ACDM (see text). The bottom panel shows data for real galaxies (42). Individual galaxies, of which
there are 74 here, do not distinguish themselves in this diagram, though model galaxies clearly do. The organization
of the data suggest the action of a single effective force law in disk galaxies. This phenomenon does not emerge
allv / 15 —
naturally from ACDM models. | pc = 31 x 10*° m 1m=232x10 17 pc
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Thus, disk galaxies appear to be very simple systems :
know stellar mass know essentially everything else
(mass of HI, rotation velocity, radius, SFR).

This is a most remarkable and
completely unexpected behaviour,
_if galaxies are thought to form

according to the cosmological merger tree.

"Galaxies appear simpler than expected"
Disney et al. (2008, Nature)

In the SMoC galaxies depend on : mass,

spin of baryons,

spin of dark matter halo,
halo-concentration index,
merger history,

epoch of formation.

"...a process of hierarchical merging, in which the present properties of any
galaxy are determined by the necessarily haphazard details of its last major
mergers, hardly seems consistent with the very high degree of organization

revealed in this analysis. "

"If, as we have argued, galaxies come from at most a six-parameter set, then
for gaseous galaxies to appear as a one-parameter set, as observed here, the
theory of galaxy formation and evolution must supply five independent
constraint equations to constrain the observations. This is such a stringent set
of requirements that it is hard to imagine any theory, apart from the correct
one, fulfilling them all."




Which theory is this ?

It can hardly be the SMoC...

...thus,

the observational data

disfavour the existence
cnc dark matter

(SMoC leads to wrong structures
and lack of dgnamical friction

disfavors dark matter Particles)




The appearance of galaxies
is largely defined by
the law of gravitation . ..

A historical
Perspective

which may give a

CIUC. -

Remember that Einstein constructed his GR to
accommodate

Newton's empirical law of universal gravitation




1916. N T,

ANNALEN DER PHYSIK.

VIERTE FOLGE BAND 49.

1. Die Grundlage Einstein 1916

der allgemeinen Relativitdtstheorie;
von A, Einstein.

Die im nachfolgenden dargelegte Theorie bildet die denk-
bar weitgehendste Verallgemeinerung der heute allgemein als
. Relativititstheorie' bezeichneten Theorie; die letztere nenne )
ich im folgenden zur Unterscheidung von der ersteren ,spezielle E. § 21. Newtons Theorie als erste Niherung.
Relativititstheorie’ und setze sie als bekannt voraus. Die Wie schon mehrfach erwihnt, ist die spezielle Relativitits-
Verallgemeinerung der Relativititstheoriec wurde sehr er- theorie als Spezialfall der allgemeinen dadurch charakterisiert,
leichtert durch die Gestalt, welche der speziellen Relativitits- daf die g,, die konstanten Werte (4) haben Dies bedeufet

wanah Adaw ‘YA-]M“. ivnm ninma williva UVarnanhliaoiman re daw Neal

R1G A. Ewstein.

Lichtes) -ixewegt ist, so kann man auf der rechten Seite Ab-
leitungen nach der Zeit neben solchen nach den értlichen
Ioordinaten vernachlissigen, so daB man erhalt

d* 1 4
(67) .(.lf_;, -— _!“_'(r =1,23).
Dies ist die Bewegungs;,lelchung des materiellen Punktes nacli|

Newtons Tie, ie Rolle avitations-
potentlales sple Das Merkwurdlge an diesem Resultat ist,

Remember that Einstein constructed his GR to
accommodate

Newton's empirical law of universal gravitation




Remember that Einstein constructed his GR to
accommodate

Newton's empirical law of universal gravitation

based on observational data limited entirely to the
Solar System on a scale of Mercury to Neptune.

> 6 orders of
magnitude

Remember that Einstein constructed his GR to
accommodate

Newton's empirical law of universal gravitation

based on observational data limited entirely to the
Solar System on a scale of Mercury to Neptune.

ie.
over a spatial scale

s < 30AU =10"3%pc

and an acceleration (space-curvature) scale

6 x 107 %m/s* < gy < 4 x 1072 m/s”

Galaxies had not yet been discovered and they
correspond to scales

s > 10° pc

gn < 1077 m/s” |

40

> 4 orders of
magnitude




Should one expect an
empirical law to hold

over an extrapolation of
orders of magnitude ?

41

Depth

Gedankenexperiment o b

Depth of a trampolin with increasing weight :

measurement

Modell
fit to the data

Extrapolation - may we expect this to work ?

0.0000001¢g

Ig 10g 100g
Weight
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How to Procee& ?

A clue is Provicled
bg the

mass-cliscrepancgwaccelcration
data

n ga!axies

Disc galaxies

Balance between
gravitation
and
centrifugal force
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Mass-Discrepancy correlation with acceleration

McGaugh, Lelli & Schombert 2016, PRL

FIG. 3. The centripetal acceleration observed in rotation
curves, gons = V2/R, is plotted against that predicted for
the observed distribution of baryons, guar = |0®ba:/OR| in
the upper panel. Nearly 2700 individual data points for 153
SPARC galaxies are shown in grayscale. The mean uncer-
tainty on individual points is illustrated in the lower left cor-
ner. Large squares show the mean of binned data. Dashed
lines show the width of the ridge as measured by the rms in
each bin. The dotted line is the line of unity. The solid line
is the fit of eq.[4 to the unbinned data using an orthogonal-
distance-regression algorithm that considers errors on both
variables. The inset shows the histogram of all residuals and
a Gaussian of width ¢ = 0.11 dex. The residuals are shown
as a function of gope in the lower panel. The error bars on the
binned data are smaller than the size of the points. The solid
lines show the scatter expected from observational uncertain-
ties and galaxy to galaxy variation in the stellar mass-to-light
ratio. This extrinsic scatter closely follows the observed rms
scatter (dashed lines): the data are consistent with negligible
intrinsic scatter.
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Mass-Discrepancy correlation with acceleration

best (latest) CDM models

Wu & Kroupa 2015
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Mass-Discrepancy correlation with acceleration =~ W& Kroupa2015
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Consider space-time scale invariance :

(Milgrom 2009; Kroupa, Pawlowski & Milgrom 2012; Kroupa 2015)

If‘ <t7 x? y? Z) — >\<t7 x? y? Z)
then, the Newtonian gravitational acceleration, gN X GM / 7“2 ,

—2
scales as gN — A gN
while the kinematical acceleration, ¢, scales as g — )\_1 g {‘;_f}

For gravitational and kinematical acceleration to also be scale invariant
we thus need to scale as ,1/2
g gn

1 92 = aogN Ot a’ = QogN
9= "(aogn)?
1.€ a
o
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space-time scale invariance (from above) :

. a
(= Zamm] e oo YO

o

centrifugal acceleration = centripetal acceleration

the Baryonic Tully-Fisher relation !

e

... V = (GMCL())

and flat rotation curves !
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The observational Baryonic Tully -Fisher Relation
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Consider space-time scale invariance :
(Milgrom 2009; Kroupa, Pawlowski & Milgrom 2012)
If (t,x,y,z) — )\(t,iﬁ,y,Z)

) P =augn [ 9= (ao gn)

[SIE
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Consider space-time scale invariance :

(Milgrom 2009; Kroupa, Pawlowski & Milgrom 2012)
U (t7 x? y? z) — >\(t7 x? y? z)
2 __ 2
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Mass-Discrepancy correlation with acceleration

The Sanders-McGaugh correlation explained
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(V/V,)?

Mass-Discrepancy correlation with acceleration

The Sanders-McGaugh correlation explained
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Mass-Discrepancy correlation with acceleration
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The Sanders-McGaugh correlation explained
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Galaxies follow the same law,
independently how they formed.

Exactly like planetary systems :
all follow the Kepler's laws,
independently how they formed.
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Scale-Invariant or Milgromian dynamics in our current
state of knowledge represents an effective empirical
theory which is able to describe galaxies based on their
baryonic content only.

It is already remarkable that something like this exists !

This may be viewed as an analogy to Kepler's or Newton's laws.

This we cannot argue against.

It is therefore worthwhile to seek a possible deeper
theoretical understanding of Milgromian dynamics.
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The data thus very strongly point towards a
new law of nature
(scale-invariant dynamics or Milgromian dynamics)
in the regime of
very weak space-time curvature.

Conference Cosmology on Small Scales 2016

Interesting possible connection with Michal KfiZzek and Yurii Dumin (Eds.)

Institute of Mathematics CAS, Prague
matter-free GR:

SCALE INVARIANT COSMOLOGY:
COSMOLOGICAL MODELS AND SMALL SCALE EFFECTS

André Maeder 2016arXiv160506315M

Geneva Observatory 2016arXiv160506314M

chemin des Mailletes, CH-1290 Sauverny, Switzerland 2016arXiv160506314M
andre.maeder@unige.ch

Abstract: We make the hypothesis that the empty space, at macroscopic
and large scales, is scale invariant. This leads to essential simplifications in
the cosmological equations with scale invariance. There is an additional term
remaining that opposes to gravity and favors accelerated expansion. This
term makes a significant contribution, called ), to the energy-density of the
Universe, satisfying an equation Q,, + Q) +Q, = 1. Numerical integrations of
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A lesson from history

How was the Planck black body radiation spectrum derived ?

"At the end of the Nineteenth Century any physicist who sought a theoretical understanding of blackbody radiation
imagined heating a hollow body that had a small hole drilled in its side. That physicist then imagined that the cavity
inside that body contained a large number of electromagnetic dipole resonators of undetermined composition: absorbing
and re-emitting radiation more or less at random, those resonators mixed the radiation to ensure that it filled all of the
modes of electromagnetic vibration available inside the cavity.

Classical electromagnetic theory, completed by James Clerk Maxwell (1831 Jun 13 - 1879 Nov 05) in the 1860's,
provides a straightforward means of calculating the number of vibrational modes inside the cavity."

But the theory implied a ultraviolet catastrophe (infinite energy density at short wavelengths),
which was not measured.

Essentially, Planck found an interpolation formula between Wien's spectral energy
distribution law (at high frequencies) and the
Rayleigh-Jeans law (at low frequencies).

By doing so he had to introduce an auxiliary parameter, A,
("Hilfsgroesse" in German).

At that time, in 1900, no-one knew that this was essentially a constant of
energy quantisation.

"Thus Planck laid the cornerstone upon which he and other physicists of the early Twentieth Century built the grand
edifice of the Quantum Theory."

(from http://bado-shanai.net/Map %200f%20Physics/mopPlancksderivBRL.htm)
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Today

How was Milgromian gravitational dynamics derived ?

At the end of the Twentieth Century any physicist who sought a theoretical understanding of gravitation, imagined it
to be a geometrical distortion of space time aided by unseen dark matter particles.

The general theory of relativity, published by Albert Einstein in 1916, provides a "straightforward" means of
calculating gravitational effects around any mass concentration.

But the theory implied galactic dynamics processes (e.g. dynamical friction) not
observed and wrong galactic rotation curves.

Al

Essentially, Milgrom found an interpolation formula between Newton's "universal" law
of gravitation (nearby gravitating bodies) and the effective (Newtonian)
isothermal-potential law (at very low accelerations).

"Thus Milgrom laid the cornerstone upon which he and other physicists of the early Twentyfirst Century built the grand
edifice of the ....2.... Theory."

(e.g. Famaey & McGaugh 2010; Kroupa 2015)
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The data thus very strongly point towards a
new law of nature
(scale-invariant dynamics or Milgromian dynamics)
in the regime of
very weak space-time curvature.

29 March 1999 o

PHYSICS LETTERS A

ELSEVIER Physics Letters A 253 (1999) 273-279 —_———

This property of Minkowski
space may be due to
quantum-mechanical processes  The modified dynamics as a vacuum effect
in the vacuum :
Mordehai Milgrom

Department of Condensed Matter Physics, Weizmann Institute. Rehovot, Israel

Received 17 August 1998; revised manuscript received 4 January 1999; accepted for publication 25 January 1999
Communicated by PR. Holland

Abstract

To explain the appearance in MOND of a cosmological acceleration constant, ao, I suggest that MOND inertia - as
embodied in the actions of free particles and fields - is due to effects of the vacuum. The same vacuum effects enter both
MOND (through ap) and cosmology (e.g. through a cosmological constant A). For example, a constant-acceleration (a)
observer in de Sitter universe sees Unruh radiation of temperature 7 o [a® + a3]'/%, with ag = (1A)'?, and I note that
T(a) — T(0) depends on a in the same way that MOND inertia does. © 1999 Published by Elsevier Science B.V.
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Milgromian Dynamics
from quantum mechanical processes in the vacuum

Kroupa et al. (2010), Appendix A (see Milgrom 1999) :

Observers experiencing a very small acceleration would thus see an Unruh
radiation with a low temperature close to the Gibbons-Hawking one, meaning
that the inertial resistance defined by the difference between the two radiation
temperatures would be smaller than in Newtonian dynamics, and thus the
corresponding acceleration would be larger. This is given precisely by the
formula of Milgrom (1983) with a well-defined transition-function {(x), and ao =
¢ (\/3)172, Unfortunately, no covariant version (if at all possible) of this
approach has been developed yet."
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Milgromian Dynamics

Ansatz :
a\ . plz) = 1if |z > 1 R R
u<—>a:g , e d=ghp Tt > gk
ag plr) =z if |z] < 1

What is the transition function #(z) ?

x a
p(z) = T o r= —
(1+a22)2 Qg (Milgrom 1999, Physics Letters A)
Note here that the quantity a(ar, /da), which mea-
E irical . f sures e.g. the temperature change under small dilata-
mplrIC?. constraints from tions of the orbit, also gives a MOND-like expression
combination of Solar system o

and Galactic observations : a-, =au(a/a), (10)
Hees, Famaey et al. 2016, MNRAS) w(x) =x/(1+x3)'72, (1)

and ag = (34)'/2, although the significance of this is,

Effects on the outer Solar System:  283in. notclear

"Sedna and the cloud of comets..."
Pauco & Klacka (Bratislawa) 2016,A&A)
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Milgromian Dynamics

Ansatz :
a\ . p(r) =1if x| > 1 L =
M(—)a:g ‘ e d=ghpt > gk
ap plx) =xif |z] < 1
Thus,
a GM a
gN—u<a—0> @ - 2 —u(a—o)a
a a GM a? GMay
For a < an: — | = — # = — and g =
’ M(%) ao r? ag r
2
centripetal = centrifugal acceleration a = v = GMag (v = vc)

1

.0. G} — (G M ao)a the Baryonic Tully-Fisher relation
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Milgromian Dynamics

Ansatz :
a\ . . p(x) =1if |z| > 1 L .
pl—)a=g , ie. d=gip ! > gk
ag plr) =z if |z] < 1

What is the interpretation ?

Milgromian dynamics can be understood

a different effective Law of Gravity

through a generalised "Poisson" equation

(]9 -
Volpl— | Vo] =47 Gp

ao

giving the Milgromian potential

to be

a modification of the Law of Inertia

through the breaking of the equivalence of inertial
and gravitating mass

—1

[¥¢]

ap

i=F m

where F" = m gy for gravity

7R

The data thus very strongly point towards a
new law of nature

(scale-invariant dynamics or

Milgromian dynamics)

in the regime of
very weak space-time curvature.

A formulation in the
classical limit is known
and is energy and momentum
conserving :

Bekenstein & Milgrom (1984, Apl)

The field equation (3) is analogous to the equation for the
electrostatic potential in a nonlinear isotropic medium in
which the dielectric coefficient is a function of the electric field
strength.

It may also be useful to note that our field equation is equiv-
alent to the stationary flow equations of an irrotational fluid
which has a density p = u(|Vo|/a,), a negative pressure P =
—2"‘a(z,§':[(V<p)2/a3], flow velocity & = Ve, and a source dis-
tribution S(r) = 4nGp. The fluid satisfies an equation of state
P() = =27 a3 F {[u” P} = f(5).

An equation of the same form as equation (3) has been
studied in a different context to describe classical models of
quark confinement using a very different form of the function p
at both large and small values of its argument (see Adler and
Piran 1984 and also Lehman and Wu 1983 for a review).

II. THE FIELD EQUATIONS

In Newtonian gravity test bodies move with an acceleration
equal to gy = —Voy, where ¢y is the Newtonian gravitational
potential. It is determined by the Poisson equation V3¢ =
4nGp, where p is the mass density which produces ¢y. The
Poisson equation may be derived from the Lagrangian

Ly=— Jd’r{pwy + (87G) " '(Von)?} - (2a)

In searching for a modification of this theory we will want to
retain the notion of a single potential ¢ from which acceler-
ation derives. And, as in Newtonian gravity, it is desirable that

¢ be arbitrary up to an additive constant. The most general
modification of Ly which will yield these features is

2
L=— fd’r{p(p + (8nG)~ laé.@[%]} s (2b)
0

where #(x?) is an arbitrary function. Note that a scale of
acceleration is necessary unless we are in the Newtonian case.

Variation of L with respect to ¢ with variation of ¢ van-
ishing on the boundary yields

V- [u(|Vol/ag)Ve] = 4nGp , (3)

with pu(x) = #'(x?), as the equation determining the modified
potential. A test particle is assumed to have acceleration g =
— V. We supplement equation (3) by the boundary condition
|[Veo|— 0asr— 0.




In fact, given an observed baryonic matter distribution, the
rotation curve

can be precisely predicted using Milgromian dynamics

cannot be predicted using LCDM.

plus in Milgromian dynamics dark matter
significantly reduced in galaxy clusters

* (e.g. Sanders 2009 (review) :
"Modified Newtonian Dynamics :
A Falsification of Cold Dark Matter")
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How successtul is
Milgromian gravitation

com Parecl to

observations ?
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Perform simulations of galaxy formation with gas dynamics, star formation and feedback,
i.e. full-scale baryonic processes, using the computer code Phantom of Ramses (PoR,
Lueghausen, Famaey & Kroupa 2014, CJP).

MNRAS 463, 3637-3652 (2016)
Advance Access publication 2016 September 14

doi:10.1093/mnras/stw2331

Star formation triggered by galaxy interactions in modified gravity

1% : 2 3,4
Florent Renaud, ™ Benoit Famaey~ and Pavel Kroupa™
! Department of Physics, University of Surrey, Guildford GU2 7XH, UK
2 Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS UMR 7550, 11 rue de I Université, F-67000 Strasbourg, France
3 Helmholtz-Institut fiir Strahlen- und Kernphysik, Nussallee 14-16, D-53115 Bonn, Germany
“ Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holesovickdch 2, CZ-180 00 Praha 8, Czech Republic

Accepted 2016 September 12. Received 2016 September 12; in original form 2016 July 24

ABSTRACT

Together with interstellar turbulence, gravitation is one key player in star formation. It acts
both at galactic scales in the assembly of gas into dense clouds and inside those structures for
their collapse and the formation of pre-stellar cores. To understand to what extent the large-
scale dynamics govern the star formation activity of galaxies, we present hydrodynamical
simulations in which we generalize the behaviour of gravity to make it differ from Newtonian
dynamics in the low-acceleration regime. We focus on the extreme cases of interacting galaxies,
and compare the evolution of galaxy pairs in the dark matter paradigm to that in the Milgromian
dynamics (MOND) framework. Following up on the seminal work by Tiret & Combes, this
paper documents the first simulations of galaxy encounters in MOND with a detailed Eulerian
hydrodynamical treatment of baryonic physics, including star formation and stellar feedback.
We show that similar morphologies of the interacting systems can be produced by both the
dark matter and MOND formalisms, but require a much slower orbital velocity in the MOND
case. Furthermore, we find that the star formation activity and history are significantly more
extended in space and time in MOND interactions, in particular in the tidal debris. Such
differences could be used as observational diagnostics and make interacting galaxies prime
objects in the studysof the nature of gravitation at galactic scales.

3644  F. Renaud, B. Famaey and P. Kroupa (2016)
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Figure 3. Map of the stellar surface density (left), gas density (centre) and velocity along the line of sight (right) of the Ny (top) and Ms (bottom), at the
second pericentre passage. For the sake of clarity, only the velocity field in regions of high gas density is shown.




Galaxy formation and evolution: (Wittenburg,2016/17, MSc thesis)

The evolution over 10 Gyr of a spherical gas cloud of mass Mgas = 6.4x109
Mo and rsph =20 kpc and with an initial cylindrical rotational law with 1=
0.025 Myr—1:
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gas only
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exp fit

0 5
r [kpc]

10

Model galaxies lie on BTFR, have flat rotation curves, follow
Renzo's rule and have
exponential surface density profiles.

Naturally !

Results are not very sensitive to the
algorithms for baryonic processes !
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Formation and evolution of a compact group of galaxies :
(Wittenburg, 2016/17, MSc thesis)

The model begins with an initially 10* K warm spherical gas cloud
of mass Mgas = 10" Mo, initial radius of rsph =50 kpc and with an

initial cylindrical rotational law vcire=1m R, 1=0.1 My
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Pavel Kroupa: Praha Lecture 4
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stars only
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Pavel Kroupa: Praha Lecture 4

Hickson Compact Group 40

. in the real Universe and in Milgromian
dynamics, galaxies merge rarely




Formation and evolution of galaxies in MOND :
(Wittenburg, 2016/17, MSc thesis)

These computations show :

1) Exp. disks arise naturally.

2) The model galaxies are on the BTFR.

3) Details of baryonic physics are not decisive.
4) Very early (<1Gyr) disk galaxies appear.

5) During the formation of a compact group of galaxies,
the early merging (due to gas dissipation) evolves
into a long-lived compact group without significant
later merging (due to lack of dark matter halo).
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Mordecai Milgrom
(+PK)
Strasbourg, 29.06.2010

Ansatz :
(Milgrom 1983, ApJ, 270, 371)
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