

Jaroslav Dudík

Lecture 1 Selected Chapters in Astrophysics Faculty of Mathematics and Physics, Charles University, 2018-10-22

Motivation: Irradiance

The Solar "Constant"

Energy flux budget at Earth

$$F = \frac{L_{\odot}}{4\pi (1 \text{ AU})^2} = \frac{3.846 \times 10^{26} \text{ W}}{4\pi (1.49597 \times 10^{11} \text{ m})^2} = 1367.6 \text{ Wm}^{-2}$$

- Variations due to elipticity of the Earth's orbit (*e* = 0,0167) perihelion: ~ 1414,4 Wm⁻² (+3,3%)
- aphelion: ~ 1323,0 Wm⁻² (-3,3%)
- ➢ Earth's albedo A = 0,367 (but clouds etc.)
 ⇒ mean temperature at Earth

$$\pi R_{\otimes}^2 (1-A)F = 4\pi R_{\otimes}^2 \sigma T_{\otimes}^4 \left(\frac{100}{119}\right)^4$$

Solar Cycle Variations

Irradiance at EUV wavelengths

Chromosphere and Corona: T (z)

Image courtesy: prof. M. Druckmüller

Image courtesy: prof. M. Druckmüller

Image courtesy: prof. M. Druckmüller

Optically Thin Spectroscopy

- Optically thin = negligible absorption (no radiative transfer)
 everything emitted along the LOS will reach the observer
- The emissivity ε_{ij} of a spectral line λ_{ij} produced by transitions from level *i* to level *j* in a *k*-times ionized atom of element *X* is given by

$$\varepsilon_{ij} = \frac{hc}{\lambda_{ij}} A_{ij} n\left(X_i^{+k}\right) = \frac{hc}{\lambda_{ij}} \frac{A_{ij}}{n_e} \frac{n\left(X_i^{+k}\right)}{n\left(X^{+k}\right)} \frac{n\left(X^{+k}\right)}{n\left(X\right)} \frac{n\left(X\right)}{n\left(H\right)} n\left(H\right) n_e$$
$$= \frac{hc}{\lambda_{ij}} C_{ji} \frac{n\left(X_i^{+k}\right)}{n\left(X^{+k}\right)} \frac{n\left(X^{+k}\right)}{n\left(X\right)} \frac{n\left(X\right)}{n\left(H\right)} n\left(H\right) n_e$$
$$= G(T, n_e) n(H) n_e$$

- Assume ionization equilibrium and excitation equilibrium can be treated separately ("coronal approximation")
- Intensity I_{ij} of this emission line from optically thin plasma of volume V along the line of sight:

$$I_{ij} = \int G(T, n_e) n(H) n_e dV$$

FIP Effect – Coronal Abundances

Elements with first ionization potential smaller than 10 keV have greatly enhanced abundances in the corona: FIP effect

Collisional Ionization Equilibrium

Dere et al. (2009), Astron. Astrophys. 498 915, CHIANTI 6 paper

Coronal Radiative Losses

Dudík et al. (2011), Astron. Astrophys. 529, A103

Emission Measure and DEM(T)

If the plasma is isothermal along the LOS, the intensity is simply

$$I_{ij} = \int G(T, n_e) n_H n_e dV = G(T, n_e) \int n_H n_e dV = G(T, n_e) EM(T)$$

 However, if the plasma is multithermal, i.e., many different structures along the LOS, the intensity is given by

$$I_{ij} = \int G(T, n_e) n_H n_e \frac{dV}{dT} dT = \int G(T, n_e) DEM(T) dT$$

- where DEM(T) is the differential emission measure
- DEM(T) has to be determined from observations.
- Inverse, ill-posed problem, but corona sometimes is multithermal!

EM-loci Method: Multithermality

EUV and X-ray Filters

Dudík et al. (2009), Astron. Astrophys. 505, 1255

Hinode

- Hinode ("Sunrise") Japanese mission, launched 2006
- European and US collaboration
- The X-Ray Telescope (XRT)
- EUV Imaging Spectrometer (EIS)
- multi-filter telescope
- 170-210 Å and 250-290 Å
- slit-slot mech. 1", 2", 40", 266"
- 0.5 m mirror, filter packages

Narukage et al. (2011), Solar Phys. 269, 169

Solar Optical Telescope (SOT)

Hinode/XRT

filter wheel 1

filter wheel 2

Narukage et al. (2011), Solar Phys. 269, 169

Hinode/XRT Temperature Response

XRT Temperature Diagnostics

Atmospheric Imaging Assembly

Solar Dynamics Observatory:

- NASA, launched 2010
- current workhorse for Solar Physics

Atmospheric Imaging Assembly (AIA):

- four identical EUV full-disc telescopes, state-of-the-art
- cadence of 12 seconds
- 0.6" px size, 1.5" resolution
- broad temperature coverage to study coronal and flare physics

Table 1. Predicted AIA count rates.

	Ion	λ	$T_{\rm p}{}^a$	Fraction of total emission			
		Å	K	CH	QS	AR	FL
94 Å	Mg VIII	94.07	5.9	0.03	_	_	_
	FeXX	93.78	7.0	-	_	_	0.10
	Fe XVIII	93.93	6.85	_	_	0.74	0.85
	Fe X	94.01	6.05	0.63	0.72	0.05	_
	Fe VIII	93.47	5.6	0.04	-	_	_
	Fe VIII	93.62	5.6	0.05	-	-	_
	Cont.			0.11	0.12	0.17	-
131 Å	O VI	129.87	5.45	0.04	0.05	_	_
	Fe XXIII	132.91	7.15	-	-	-	0.07
	FeXXI	128.75	7.05	-	_	_	0.83
	Fe VIII	130.94	5.6	0.30	0.25	0.09	-
	Fe VIII	131.24	5.6	0.39	0.33	0.13	-
	Cont.			0.11	0.20	0.54	0.04
171 Å	Ni XIV	171.37	6.35	_	_	0.04	_
	Fe X	174.53	6.05	_	0.03	_	_
	FeIX	171.07	5.85	0.95	0.92	0.80	0.54
	Cont.			-	-	-	0.23
193 Å	OV	192.90	5.35	0.03	_	_	_
	Ca XVII	192.85	6.75	_	_	_	0.08
	Ca XIV	193.87	6.55	-	_	0.04	_
	Fe XXIV	192.03	7.25	_	_	-	0.81
	Fe XII	195.12	6.2	0.08	0.18	0.17	_
	Fe XII	193.51	6.2	0.09	0.19	0.17	_
	Fe XII	192.39	6.2	0.04	0.09	0.08	-
	Fe XI	188.23	6.15	0.09	0.10	0.04	-
	Fe XI	192.83	6.15	0.05	0.06	_	_
	Fe XI	188.30	6.15	0.04	0.04	-	-
	Fe X	190.04	6.05	0.06	0.04	-	-
	FeIX	189.94	5.85	0.06	-	-	-
	FeIX	188.50	5.85	0.07	-	-	_
	Cont.			-	-	0.05	0.04
211 Å	Cr IX	210.61	5.95	0.07	_	_	_
	Ca XVI	208.60	6.7	_	_	_	0.09
	Fe XVII	204.67	6.6	-	_	_	0.07
	Fe XIV	211.32	6.3	-	0.13	0.39	0.12
	Fe XIII	202.04	6.25	-	0.05	_	-
	Fe XIII	203.83	6.25	_	_	0.07	_

211 Fe XIV193 Fe XII171 Fe IX

211 Fe XIV193 Fe XII171 Fe IX

X-ray "hot" loops

fan loops

AR core (X-rays)

EUV moss

peripheral loops (EUV)

TRACE 171 warm loops

- Temperature profiles: Isothermality
- Scale-height
- Loop Cross-sections
- Loops & Background

Geometry of Coronal Loops

Loops can be Hydrostatic

Coronal Background

Background can be ~ 80% of the actual observed signal:

Aschwanden et al. (2008), ApJ 680, 1477
Loops or Strands...

Aschwanden et al. (2000), ApJ 541, 1059

- Loop: coherent structure in an observed image of the corona
 Strand: Fundamental, independent, elementary structure with an isothermal cross-field profile, thickness down to gyro-radius < 1 m
- Reale & Peres (2000), ApJ 521, L45: Multithermal, multi-strand loop, with different temperature structure for each strand, can produce false "isothermal" loop if unresolved

Isothermal or Multithermal?

Schmelz et al. (2009): ApJ 691, 503: "Are Coronal Loops Isothermal or Multithermal?"

Conclusion: Yes

Loop Dynamics

Nanoflare Storms

Viall & Klimchuk (2011), ApJ 738, 24

Coronal Heating Problem

- The Corona is heated to temperatures of several MK. But how?
- Small-scale reconnection Parker's nanoflares
- Wave heating transfer of energy

from waves to particles

 Note on terminology: The current "nanoflare" models simply refer to any impulsive energy release (papers by the Klimchuk group),

> i.e., not only reconnection, but also (any) bursty wave heating

Exponentially decreasing heating has heating flux of

$$F_{\rm H} = E_{\rm H0} s_{\rm H}$$

$$\approx 5 \times 10^3 \left(\frac{n_e}{10^8 \, {\rm cm}^{-3}}\right)^2 \left(\frac{T}{1 \, {\rm MK}}\right) \quad [{\rm ergs \ cm}^{-2} {\rm s}^{-1}]$$

$$\uparrow$$

$$E_{\rm H0} \approx E_{rad} = n_e^2 Q(T)$$

- Simplest assumption: radiation losses balanced by heating flux
- Coronal hole: $T \approx 1$ MK, $n_e \approx 10^8$ cm⁻³: $F_H \approx 5 \times 10^3$ ergs cm⁻² s⁻¹
- Active region: $T \approx 2.5$ MK, $n_e \approx 2 \times 10^9$ cm⁻³: $F_H \approx 5 \times 10^6$ ergs cm⁻² s⁻¹

Statement of the Problem: MHD

H

Scaling Laws: Simple Solutions

Assumptions:

- No time derivatives
- No flows
- Geometrically symmetric loop with symmetric heating
- Vanishing thermal conductivity at loop apex and footpoints

$$p_{0}(L_{0}, s_{H}, T_{1}) = L_{0}^{-1}T_{1}^{3}S_{1}^{-3},$$

$$P_{0}(L_{0}, s_{H}, T_{1}) = L_{0}^{-1}T_{1}^{3}S_{1}^{-3},$$

$$Serio \ et \ al. \ (1981),$$

$$S_{1}^{RTV} = 1,4 \times 10^{2} \quad [K \ s^{2/3}kg^{-1/3}],$$

$$S_{2}^{RTV} = 9,5 \times 10^{-6} \quad [kg \ m \ s^{-3}K^{-7/2}].$$

$$S_{1}^{Serio} = 1.4 \times 10^{2} \ e^{-(0,08L_{0}/s_{H}+0,04L_{0}/s_{p})},$$

$$S_{2}^{Serio} = 9,5 \times 10^{-6} \ e^{(0,78L_{0}/s_{H}-0,36L_{0}/s_{p})}.$$

Comparison to Observations

Proposed Heating Models

Lundquist et al. 2008, ApJ 689, 1388

TABLE 1

HEATING SCALE RELATIONSHIPS

Description	Number	Reference	MDK Scaling	B Case a	B Case b	B Case c	L
Stochastic buildup	1	1	$B^2L^{-2}V^2\tau$	B^2	B^1	B^2	L^{-2}
Critical angle	2	2	$B^2 L^{-1} V^1 \tan \theta$	B^2	$B^{1.5}$	B^2	L^{-1}
Critical twist	3	3	$B^2 L^{-2} V^1 R^1 \phi$	B^2	B^{1}		L^{-2}
Reconnection $\propto v_A$	4	4	$B^1 L^{-2} \rho^{0.5} V^2 R^1$	B^1		$B^{0.5}$	$L^{-2.45}$
Reconnection $\propto v_{A\perp}$	5	5	$B^{1.5}L^{-1.5}\rho^{0.25}V^{1.5}R^{1.5}$	$B^{1.5}$		$B^{0.75}$	$L^{-1.725}$
Current layers (DC)	6	6	$B^2 L^{-2} V^2 \tau \log R_m$	B^2			L^{-2}
	7	7	$B^2 L^{-2} V^2 S^{0.1} \tau$	B^2			L^{-2}
	8	8	$B^2 L^{-2} V^2 \tau$	B^2			L^{-2}
Current sheets	9	9	$B^2 L^{-1} R^{-1} V_{\rm ph}^2 \tau$	B^2		$B^{2.5}$	L^{-1}
Taylor relaxation	10	10	$B^2 L^{-2} V_{\rm ph}^2 \tau$	B^2			L^{-2}
Turbulence (DC) with:			P.				
Constant dissipation coefficients	11	11	$B^{1.5}L^{-1.5}\rho^{0.25}V^{1.5}R^{1.5}$	$B^{1.5}$		$B^{0.75}$	$L^{-1.725}$
Closure	12	12	$B^{1.67}L^{-1.33}\rho^{0.17}V^{1.33}R^{0.33}$	$B^{1.67}$		$B^{1.505}$	$L^{-1.483}$
Closure + spectrum ($s = 0.7$)	13	13	$B^{1.7}L^{-1.7}\rho^{0.15}V^{1.3}R^{0.7}$	$B^{1.7}$		$B^{1.35}$	$L^{-1.835}$
Closure + spectrum $(s = 1.1)$	14	13	$B^{2.1}L^{-2.1}\rho^{-0.05}V^{0.9}R^{1.1}$	$B^{2.1}$		$B^{1.55}$	$L^{-2.055}$
Resonance $(m = -1)$	15	14	$B^{0}L^{-2}$	B^0			L^{-2}
Resonance $(m = -2)$	16	14	$B^{-1}L^{-1}\rho^{0.5}$	B^{-1}			$L^{-1.45}$
Resonant absorption I $(m = -1)$	17	15	B^0L^0	B^0			L^0
Resonant absorption I ($m = -2$)	18	15	$B^{-1}L^1 ho^{0.5}$	B^{-1}			$L^{0.55}$
Resonant absorption II $(m = -1)$	19	16	$B^0 L^1 \rho^1$	B^0			$L^{0.1}$
Resonant absorption II $(m = -2)$	20	16	$B^{-1}L^2\rho^{1.5}$	B^{-1}			$L^{0.65}$
Current layers (AC)	21	17	$B^1 L^{-1} \rho^{0.5} V^2$	B^1			$L^{-1.45}$
Turbulence (AC)	22	18	$B^{1.67}L^{-1.33}R^{0.33}$	$B^{1.67}$		$B^{1.505}$	$L^{-1.33}$

Warren & Winebarger (2007), ApJ. 666, 1245

0.566 = 0.383

0.753

y'

Do We Understand the Geometry?

But some loops are resolved...

Brooks et al. (2013), ApJ 772, L19

Peter et al. (2013) A&A 556, A104

Geometry... Part 2

STEREO A 171A | 2008-01-10T05:06:00.017

STEREO B 171A | 2008-01-10T05:06:20.158

Malanushenko & Schrijver (2013), ApJ 775, 120

- No circular cross-sections
- Introduces bias in loop selection

Expanding Loop: Thermal Struct.

Peter & Bingert (2012), A&A 457, A1

- MHD model of the solar corona
- Magnetic flux-tube with expanding area (cross-section)
- Interplay between temperature and density structure
- Leads to apparently non-expanding AIA loop
- Even if wellresolved

Hinode/SOT and SDO/AIA

"Fundamental Flux-tubes"

"Fundamental Flux-tubes"

Highly Squashed Cross-sections

Fe XIII 202 Å

Lionello et al. (2011) Loops Workshop V presentation

Thermal Non-Equilibrium

$$E_H - n_e^2 Q(T) = -\nabla . F_C$$

- 1. If the heating is too localized near the footpoints, thermal conduction cannot balance the radiative losses near the apex.
- 2. As a result, loop apex cools
- 3. Cooling increases radiative losses!
- 4. Condensation develops, grows and falls down. Loop empties
- 5. Empty loop is heated, resulting in chromospheric evaporation. Cycle renews.

Complete Condensations

(In)Complete Condensations

(In)Complete Condensations

Mikić et al. (2013) ApJ 773, 94

Coronal Rain

Antolin & Roupe van der Voort (2012), ApJ, 745, 152

 $\lambda - \lambda_0 = -0.10$ nm

Thermal Non-Eq.: Recent Obs.

17.1 nm

30.4 nm

Auchère et al. (2018), ApJ, 853, 176

Thermal Non-Eq.: Recent Obs.

Auchère et al. (2018), ApJ, 853, 176

- Co-spatial and periodic (6.6 hr) showers
- Complete condensations seen at transition-region temperatures (0.1 MK)
- "It is raining as usual": Most of the trails follow parabolas (constant acceleration)
- Evidence for steady footpoint heating