

Solar Flares and Eruptions

Jaroslav Dudík

Lecture 2 Selected Chapters in Astrophysics Faculty of Mathematics and Physics, Charles University, 2018-10-23

Outline

. The CSHKP Standard Solar Flare Model in 2D

Observations of Inflow: Imaging, Spectroscopy and Stereoscopy DEM Temperature Maps from Atmospheric Imaging Assembly Chromospheric Evaporation: Role of spatial resolution

II. Intrinsically 3D Processes

Filament Eruption observed by SDO/AIA + Hinode/EIS Magnetic "Implosion": Loop Contractions & Oscillations

- III.3D Reconnection and Magnetic TopologyMagnetic Null-points and Null-Point ReconnectionNature of the EUV Late Phase of Solar Flares
- IV. The Standard Solar Flare Model in 3D
 Torus-Unstable Flux rope and Its Signatures
 Slipping Reconnection; connection to precursors and evaporation
 New types of reconnection in 3D

What is a Solar Flare?

- Short (usually) and very bright manifestation of the solar magnetic activity
- Consequence of magnetic reconnection: Free magnetic energy converted to thermal and kinetic energies
- Thermal energy leads to increase in thermal radiation: plasma at T > 10 MK
- Kinetic energy: particle acceleration and associated non-thermal emission

Benz (2002)

Atmospheric Imaging Assembly

Solar Dynamics Observatory:

- NASA, launched 2010
- current workhorse for Solar Physics

Atmospheric Imaging Assembly (AIA):

- four identical EUV full-disc telescopes, state-of-the-art
- cadence of 12 seconds
- 0.6" px size, 1.5" resolution
- broad temperature coverage to study coronal and flare physics

I. The Standard Model... in 2D

Solar Flare of 2013 Dec 10

Inflows and Flare Loops

Zhu et al. (2016), ApJL, 821, L29

- Cuts along the dashed lines: inflows in AIA 171 Å and 193 Å
- Outflows in 131 Å: flare plasma

Inflows and Outflows

"Current Sheet"

Ejection observed by SDO/AIA

AIA DEMs – Regularized Inversion

H

$$I_{AIA} = \int A_{X} \Big(\int G(\lambda, T, n_{e}) R(\lambda) d\lambda \Big) n_{e} n_{H} \frac{dV}{dT} dT$$
$$= \int C(T, n_{e}) DEM(T) dT$$

A Recent Example of a 2D-ish Flare

Yan et al. (2018), ApJ, 853, L18

- Major X8.2 limb flare of 2017-09-10
- Observations of an erupting filament / hot flux rope
- After eruption: Long, protruding "current sheet" structure
- Properties of the current sheet in Warren et al. (2018, ApJ, 854, 122)

A Recent Example of a 2D-ish Flare

Yan et al. (2018), ApJ, 853, L18

- Major X8.2 limb flare of 2017-09-10
- Observations of an erupting filament / hot flux rope
- After eruption: Long, protruding "current sheet" structure
- Properties of the current sheet in Warren et al. (2018, ApJ, 854, 122)

Precursors & Tether-cutting

Chifor et al. (2007), A&A, 472, 967, after Moore & Sterling (2006), AGU Conf.

- Analyzed 8 major flares
- Precursors in 5-out-of-8 flares:
 - UV and X-ray brightenings 2-50 min prior to impulsive phase
 - located 10" from the PIL; with eruption from the location of the precursor

Tether-cutting Reconnection

Cheng et al. (2015), ApJ, 804, 82

Tether-cutting Reconnection

- 2D: Tether-cutting adds to the filament/flux-rope
- Allows for explanation of the observed Doppler velocities

Chromospheric Evaporation

EIS Sparse Raster "Imaging"

Chromospheric Evaporation

Young et al. (2013), ApJ, 766, 127

- Spectra from a flare kernel
- Very fast (400 km s⁻¹) and very intense upflowing component
- Stationary component slightly red-shifted
- Problems with resolving individual components?

Chromospheric Evaporation

Y (arcsecs)

Evaporation in Individual Kernels

ribbon

Graham & Cauzzi (2015), ApJ, 807, L22

Evaporation: Evolution

- Superposed analysis: curves for each line and kernel shifted to t = 0 s
- Strikingly similar behavior in every kernel in both Fe XXI and Mg II subordinate line
- Fe XXI upflows last about 6 min, strong condensation donwflows in Mg II, 40 km s⁻¹
- In good agreement with predictions of 1D hydro models: Fisher (1989), ApJ, 317, 502

Evaporation: Evolution

- Fe XXI completely blueshifted
- Fe XXIII asymmetric
- HYDRAD 1D simulations with beam heating
- Cut-off and spectral index given by RHESSI
- But electron flux 10x lower ! (Area? Coronal deposit?)

Evaporation = f (Flare Class) ?

-100 -50 0 50 Solar X[arc sec]

Evaporation = f (Flare Class) ?

>11.0

Flare	Fe XXIII vel		Fe XVI vel	
	$({\rm km}~{\rm s}^{-1})$		$({\rm km}~{\rm s}^{-1})$	
	K1	K2	K1	K2
C2.0	202 ± 14	60 ± 7	76*	12 ± 5
C4.7	146 ± 10	110*	43 ± 5	39 ± 5
M1.8 (Doschek et al. 2013)	150-170		40-60	
Flare	$Log N_e$ (min, max)			
	cm ⁻³			
	K1 K2		K2	
C1.0	10.0 (9.9, 10.2) 10.2 (10.0, 10.4)		10.0, 10.4)	
C2.0	10.4 (10.2, 10.6) 10.7 (10.4, > 11.0		0.4, > 11.0)	
C4.7	>11.0 (10.7	7, >11.0)	11.0 (1	0.6, >11.0)

M1.0 (Doschek et al. 2013)

Polito et al. (2017), A&A, 601, 39 Doschek et al. (2013), ApJ, 767, 55

- No dependence on flare class
- Not the same kernels

Fe XIV	densities
--------	-----------

 Dependent on flare class

How *slow* can evaporation be?

How fast can evaporation be?

(i) 22-Oct-2014 14:06:20-14:06:13 UT (k

Lee et al. (2017), ApJ, 836, 150

- White-light X1.6 <u>confined</u> flare of 2014 October 22
- WL kernel (arrow) with HXR peak and HMI continuum enhancement (indicative of non-thermal beam heating)
- Bulk blue-shift of the Fe XXIII and XXIV (rare in EIS)
- Red-shifts in chromospheric and TR lines observed by IRIS

II. Flares and Eruptions are 3D!

SDO AIA_2 193 31-Aug-2012 19:36:07.840 UT

$2D \rightarrow 3D$ is easy?

- Asymmetric model of a flare capturing dynamics of:
- propagation of brightenings along ribbons
- progressive ribbon separation
- **2.5D**

II. 2D \rightarrow 3D Magnetic Null Points

3D Null Point Reconnection

Three Loop Systems

3D Null Point Reconnection

EUV Late Phase of Solar Flares

EUV Late Phase of Solar Flares

- Three different loop systems evolve on different timescales
- For A3, cooling is the longest

Cargill (2014), ApJ, 784, 49:

$$\tau_{\rm cool} = \left(\frac{2-\alpha}{1-\alpha}\right) 3k \left(\frac{1}{\kappa_0^{4-2\alpha} \chi^7} \frac{L^{8-4\alpha}}{(n_0 T_0)^{3+2\alpha}}\right)^{1/(11-2\alpha)}$$

Cooling of Flare Loops

- Conductive cooling times dependent on loop length L
- Additional heating during gradual phase required to explain the observed lightcurves: Ongoing reconnection

3D Magnetic Topology

QSLs: Geometrical structures with high gradients of connectivity

1. Suppose we project one magnetic polarity to the other: $\prod_{+-} : \vec{r}_{+} \to \vec{r}_{-}, \qquad \prod_{-+} : \vec{r}_{-} \to \vec{r}_{+},$

2. Jacobi matrices:

$$\mathcal{D}_{+-} = \begin{pmatrix} \frac{\partial X_{-}}{\partial x_{+}} & \frac{\partial X_{-}}{\partial y_{+}} \\ \frac{\partial Y_{-}}{\partial x_{+}} & \frac{\partial Y_{-}}{\partial y_{+}} \end{pmatrix}, \qquad \mathcal{D}_{-+} = \begin{pmatrix} \frac{\partial X_{+}}{\partial x_{-}} & \frac{\partial X_{+}}{\partial y_{-}} \\ \frac{\partial Y_{+}}{\partial x_{-}} & \frac{\partial Y_{+}}{\partial y_{-}} \end{pmatrix}$$

3. We can then define following quantities:

$$N_{\pm} = \sqrt{\left(\frac{\partial X_{\pm}}{\partial x_{\mp}}\right)^2 + \left(\frac{\partial X_{\pm}}{\partial y_{\mp}}\right)^2 + \left(\frac{\partial Y_{\pm}}{\partial x_{\mp}}\right)^2 + \left(\frac{\partial Y_{\pm}}{\partial y_{\mp}}\right)^2},$$

$$Q = \frac{N_{+}^{2}}{\left|\det(D_{+})\right|} = \frac{N_{-}^{2}}{\left|\det(D_{-})\right|},$$

$$K = \ln\left|\det(D_{+})\right| = -\ln\left|\det(D_{-})\right|.$$

Q and the Quasi-Separatrix Layers

 Quasi-separatrix layers are places constituted by magnetic field-lines having very high Q >> 2.

Démoulin et al. (1997), Astron. Astrophys, 325, 305 Titov, Hornig & Démoulin (2002), J. Geophys. Res. 107, 1164

QSLs and Flare Ribbons

Zhao et al. (2016), ApJ, 823, 62

- NLFFF extrapolation of the pre-flare state at 2014 September 10
- Flux rope and sigmoid
- Overlying field
- Complex topological structure

QSLs and Flare Ribbons

QSLs: Flux Rope and Sigmoid

2014/09/10 15:24 UT

Standard Solar Flare Model in 3D

- MHD model with zero-temperature
- Flux imbalance and hooked QSLs
 Aulanier et al. (2012), A&A, 534, A110; Janvier et al. (2013), A&A, 555, A77

Standard Solar Flare Model in 3D

Aulanier et al. (2012), A&A 534, A110

How to Get a Flux Rope

van Ballegooijen & Martens (1989), ApJ, 343, 971

(a) -> (b)

(c) -> (d)

- Shearing motions:
- Flux cancellation at the polarity inversion line (PIL)
- Reconnection at PIL producing a long field line

FIG. 1.—Flux cancellation in a sheared magnetic field. The rectangle represents the solar photosphere, and the dashed line is the neutral line separating two regions of opposite magnetic polarity. (a) Initial potential field; (b) sheared magnetic field produced by flows along the neutral line; (c) magnetic shear is increased further due to flows toward the neutral line; (d) reconnection produces long loop AD and a shorter loop CB which subsequently submerges; (e) overlying loops EF and GH are pushed to the neutral line; (f) reconnection produces the helical loop EH and a shorter loop GF which again submerges.

Movie courtesy of Francesco P. Zuccarello Zuccarello et al. (2016), 821, 23

Q and Electric Current Density

Slipping Reco. in the 3D Model

- Hooked QSL
 traces in the
 photosphere
- Grayscale:
 el. current
 density j

- Slipping reconnection in QSLs
- fixed footpoints
- Only one set of field lines is shown
- Images after Janvier et al. (2013), A&A, 555, A77

Slipping Magnetic Reconnection

Slipping Magnetic Reconnection

Dudík et al. (2014), ApJ, 784, 144

AIA 94Å 15:00:01 UT

Slipping Loops

Kinematics of Slipping Loops

- Clear slippage of flare loops, several at the same time
- Time-distance technique used to measure velocities: The bright "front" has V_x = 16.6 km s⁻¹ ± 2.0 km s⁻¹
- Lasts almost 10 minutes
- Several weaker or intermittent structures slipping in the opposite direction

Radio Signatures of Slipping?

- Flux rope core
- Slipping loops (set 1)
- Slipping loops (set 2)

- Flux rope core
- Slipping loops (set 1)
- Slipping loops (set 2)

- unstable, rising
- @ end of the hook, part of the FR
- moving along QSL

- Flux rope core
- Slipping loops (set 1)
- Slipping loops (set 2)

- unstable, rising, expanding
- part of the flux rope (envelope)
- @ end of the hook

- Flux rope core
- Slipping loops (set 1)
- Slipping loops (set 2)

- unstable, rising, expanding
- part of the flux rope
- part of the flux rope (envelope)

Flux Rope Envelope

Eruption of Long, Hot, S-Loops

Eruption of Long, Hot, S-Loops

Solar Flare of 2013 Dec 10

Standard Solar Flare Model in 3D

Quasi-periodic Slipping

10

17:20

17:30

17:40

Time (UT since 17:15:00)

17:50

Li & Zhang (2015), ApJL, 804, L8

- Several slipping knots along the ribbon in the 2014 September 10 flare
- **Quasi-periodic recurrence of bright knots** with periods of 3 – 6 min

Quasi-periodic Slipping

Li & Zhang (2015), ApJL, 804, L8

- Quasi-periodic pattern observed also in IRIS spectra of Si IV:
 - intensity
 - Doppler shift
 - non-thermal widths
- All quantities are higher in the bright slipping knots

Chromospheric Evaporation

- Reported already by Tian et al. (2015) and Graham & Cauzzi (2015)
- However, both these papers consider impulsive phase only
- Evaporation in fact starts much sooner: in the "precursor" phase

Chromospheric Evaporation

- Slipping reconnection: IRIS slit @ loop-top at 17:03, but footpoint at 17:14 UT
- Strongly blue-shifted in the ribbon edge
- Less blue-shifted in the trailing ribbon brightenings (flare loop footpoints)
- Thermalizes during the gradual phase

Tether-cutting Reconnection

- 2D: Tether-cutting adds to the filament/flux-rope
- Allows for explanation of the observed Doppler velocities

Slipping Reco. & Tether-Cutting

- Slipping reconnection is the tether-cutting mechanism
- Detection of the slipping reconnection during the early flare phase: precursors are signatures of the flare itself, progressing from early phase towards impulsive phase
3D: Global Evolution

- Double-J ribbons: Ribbons spread away from PIL, ribbon hooks encircling the flux rope
- Flux rope and overlying arcades
- But: Coronal arcades → flux rope, and both flux rope & its envelope → flare loops

QSL Evolution

- Double-J ribbons: Ribbons spread away from PIL,
- Hooks also evolve in time
- Thus, a point outside the hook can become a part of the FR, and vice versa

QSL: start – early – impulsive

- F1: out (A) out (A) ins. ribbon (FL)
- F2: out (A) out (A) ins. hook (FR)
- F3: out (A) out (A) ins. hook (FR)
- F4: in (FR) in (FR) ins. ribbon (FL)
- F5: out (A) at hook ins. hook (FR)
- F6: out (A) in (FR) ins. hook (FL)
- F7: in (FR) out (FL) out (FL)

QSL Evolution

Summary

- Flare sometimes DO look like the 2D model especially when observed on limb
- Do not be fooled! Flares are intrinsically 3D: Reconnection either at the true 3D null-point or slipping reconnection in quasi-separatrix layers Twisted structures present and erupting
- Plasma dynamics very important:

EUV late phase due to difference in cooling timescales Chromospheric evaporation DEM analysis shows strong temperature structure

New types of 3D reconnection: ar-rf, rr-rf, in addition to aa-rf

A Recent Example of a 2D-ish Flare

Yan et al. (2018), ApJ, 853, L18

- Major X8.2 limb flare of 2017-09-10
- Observations of an erupting filament / hot flux rope
- After eruption: Long, protruding "current sheet" structure
- Properties of the current sheet in Warren et al. (2018, ApJ, 854, 122)

Movie courtesy of Francesco P. Zuccarello Zuccarello et al. (2016), 821, 23

