Astrophysics of gravitational wave sources

Lecture 2: Introduction to the physics of astronomical transients
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e How much Uranium-235 is required to make an atomic bomb?

* How much energy does it release, in kilotons of TNT?

* Why was the yield of the Hiroshima bomb (Little Boy, 20 kilotons) so low?




Astronomical transients
= non-repeating brightenings, “new stars”

SN 2011fe
06 Feb. 2011 . &
The Virtual Telescope Proiect (www . virtualtelescope.eu’ .
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Peak Luminosity [Mv]
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Analytic model of light curves of transients



Thermonuclear supernovae

* Nuclear burning of CO white dwarf (likely close to Chandrasekhar limit)
* 10°! ergs of energy (1.4 Mg is ~10°7 baryons, burning of CO produces 1 MeV/baryon)
* About as much as the Sun in ~10 billion years of its main sequence life



Analytic model of light curves of transients
with radioactivity



Shock breakout

Advection time across shock: A/v

Diffusion time of photons: tA/c

Shock optical depth t ~ c¢/v

Duration: R/c -> can find the radius of the star!
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Interaction-powered transients

Basic Picture - Type II

swept-up post-she
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cold dense shell

Fig. 1 Sketch of the basic picture in CSM interacting SNe. Four different zones are noted with
numbers: (1) the pre-shock CSM, (2) the shocked CSM, (3) the shocked SN ejecta, and (4) the
freely expanding SN ejecta. These zones are divided by boundaries corresponding to the forward
shock, the reverse shock, and the contact discontinuity between the shocked CSM and shocked
ejecta where material cools, mixes via Rayleigh-Taylor instabilities, and piles up. This is often
called the cold dense shell (CDS) in a SN IIn or Ibn. The squiggly radial lines are meant as a
reminder that X-rays and UV radiation generated in the shock can propagate out to the CSM or
inward to the unshocked ejecta, changing the physical state of the gas there. A zoom-in of zones
2 and 3 is shown at the right. In practice, efficient radiative cooling can cause these two zones to
collapse to very thin layers, and mixing can make them merge into one thin clumpy shell. This
figure 1s adapted from Smith et al. (2008).

Smith (2017)



Magnetar-powered transients
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