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Topics Covered in 4 Lectures

discovery

prompt gamma-ray emission - temporal and spectral properties

short vs long Gamma-ray bursts (GRBs)

instruments

localization techniques - coded mask, orientation-sensitive multiple detector technique, triangulation (IPN)
spatial distribution of GRBs - testing homogeneity and isotropy

afterglows

association with SNe

host galaxies

redshift measurements

pseudo-redshifts

relativistic fireball model - particle acceleration internal and external shocks, beaming
emission processes - synchrotron, inverse Compton, synchrotron self-Compton
gamma-ray polarization

polarization of afterglow emission

prompt optical emission

multi-wavelength afterglow observations

jet breaks

dark GRBs

orphan afterglows

progenitors - collapsars, mergers

simulations of collapsars, mergers, jets

kilonova

other possible types - short GRBs with extended emission, low-luminosity, ultra-long
soft-gamma repeaters - magnetars

tidal disruption events

correlations between spectral and temporal properties

cosmological probes - constraint of cosmological parameters

multimessenger observations - UHECR, neutrinos, GW

probing star formation rate and reionization era

GRBs from Population Ill stars

tests of Lorentz invariance violation



Discovery



Beginning of Gamma-Ray Burst (GRB) History

Partial Nuclear Test Ban Treaty
(1963), ratification by the
Soviet Union, United Kingdom,
and United States.

Banning nuclear weapon tests
in the atmosphere, in space
and, in water.

But, the U.S. Government
suspected prohibited tests by
Soviet Union.

U.S. government launched Vela
satellites to watch prohibited
nuclear weapon tests.
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Discovery of Gamma-Ray Bursts

* Even before discovery of GRBs, Stirling A. Colgate (1968) had proposed that bursts of
gamma-rays might be generated by relaticistic shock produced by a SN explosion.

* “GAMMA RAY FLASHES” were observed in data from 1967 by Vela 4 (0.1-1 MeV
energy band).

* Later, more events observed with additional satellites (Vela 5, 6) and showed that
not coming from earth, sun, moon, and Cwd Ty i
other planets. B S

===p GRBs have extra-terrestrial origin

* Continuous observation, all-sky coverage
* Low-background at 120 000 km altitude
» 6x10cm?® Csl scintillators each

Vela Satellites




Discovery of Gamma-Ray Bursts

* Reported to Astrophysical Journal (1973)
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Independent Confirmation of GRB

* One of the first independent confirmation of the GRB discovery. A gamma-ray
detector on Kosmos-461 s/c (Soviet satellite) detected GRB 720117 from the Vela
catalog (Mazets et.al. 1974)
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Prompt gamma-ray emission -
temporal and spectral properties



GRB Pulse Profile Variety

* For several seconds to tens of seconds GRBs outshine the rest of hard X-ray /
gamma-ray sKky.

[k

_

—

=

_
1

[

_

—

=

_
1

jooonf

-

|:|:||I||||I||||I|

0 & 10
Tme in Seconds
Credit: BATSE / CGRO team



Light Curve Properties - Early Observations

* The possible bimodal distribution * No periodicity in the light curves
of GRB durations was evidenced

. . L ah
by the first experiments. Erratic variability of light curves
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Light Curve Properties - Early Observations

* Precursor pulse (activity) before the main
emission.

Precursor
pulse
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* Narrowing of pulse profiles with energy.
Here for GRB 830801B (Kuznetsov et al. 1986).
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Log, Normalized Correlation

Light Curve Properties - Narrowing with Energy

Normalised Intensity
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Plot shows normalized and average
autocorrelation function (ACF) over 45
many bright GRBs for 4 energy range
(Fenimore et al. 1995).

From fitting the pulse width: t(E)~E**

Width decreases with photon energy.
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* Example of autocorrelating GRB 070521
(Credit: Guidorzi 2010).
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Early Observations - Non-thermal Spectra and their Evolution
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A typical GRB spectrum illustrating the non-
thermal (power-law or broken power-law) nature
of the emission and the evolution during the initial
phase of the burst GRB 830801B (Kuznetsov et
al. 1986).
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index obtained between 144-440 keV and of the
hardness ratio indicate a clear hard-to-soft
evolution for different pulses inside the GRB

(Norris et al. 1986).
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Light Curve Properties - Spectral Lags

* Time lag of low energy photons compared to high energy photons for long GRBs.

Normalised Intensity
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Light Curve Properties - Spectral Lags Short vs. Long GRBs
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* Long GRBs (duration
approx. > 2 s) tend to
have positive spectral
lags.

Norris et al. 2001a
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Light Curve Properties - GRB Pulse Profile Variety

* Large variety of GRB

light curves of the
gamma (prompt)
emission.

Measurements from the
BATSE instrument of
CGRO satellite (Fishman

et al. 1994).

* Variability: msec time

structure.
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Light Curve Properties - Millisecond Timescale Variability

* An example of a very short burst seen by BATSE illustrating how

short a burst can be and its high variability at the millisecond
timescale (Fishman et al. 1992).

The shortest observed time variability in GRB light curves was At = 1
ms. The fastest variations measured in an astrophysical source
constrain its size R, because all the fluctuations shorter than the light-
crossing time of the source will be smeared out by propagation delays
within the source. The variation At = 1 ms suggests the source to be a
compact object of the size R < cAt = 300 km for a stationary source,

or R < I'’cAt = 3x10° km for a relativistic flow with the Lorentz factor T
=~ 100.
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 Fast Rise Exponential Decay Time (t. < t,)

Light Curve Properties - FRED building block?

* A number of GRBs consist of a FRED or a combination of FREDs.
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GRB Spectrum

* Typically two power-law
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Band Function

600

* Time-averaged spectra analysed by D. Band et al. 1993 .. a

* Spectra are well described by empirical function:

» at low energies, a powerlaw with an exponential cutoff
N_(E) « E" exp (-E/E )
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Little Progress on Theory in 1980’s

More than 140 theories in the 1980’s to explain the phenomena.

THE ASTROPHYSICAT JOURNAL, 308:1.43-.[ 46, September 15
© 1980, The American Asucoomical Sociery. All rights reserved. Prnied m US.A

\

1986
GAMMA-RAY BURSTERS AT COSMOILOGICAL DISTANCES
BonpAN PaczyAskl
Princeton University Observatory
Received 1985 May 12; accepted 19856 Jure 23
ABSTRACT
We propose that some, perhaps most, gamma-ray bursters are at cosmological distances, like quasars, with a
redshift z = 1 or z = 2 This proposition requires a release of supernova-like energy of about 10*! ergs within

less than 1 s, making gamma-ray bursters the brightest objects known in the universe, many orders of magnitude
brighter than any quasars. This power must drive a highly relativistic outflow of clectron-positron plasma and
radiation from the source. The emerging spectrum should be roughly a black body with no annihilation line, and
a temperature T~ (E/Awrie)t/“. As an example the spectrum would peak at about &€ MecV for the energy
injection rate of £ = 10" ergs s ' and for the injection radius r, = 10 km.

We propose that three gamma-ray bursts, all with identical spectra, detected from B1900+ 14 by Mazets, Bohdan PaczynSkl

Golenetskii, and Gur'yan and reported in 1979, were &ll due to a single event multiply imaged by a gravitational (1 940-2007)
lens. The time intervals between the successive bursts, 10 hr to 3 days, were due to differences in the light travel
time for different images. The required mass of the lens is 10'° M, just right for a galaxy.

Subject heedings: cosmology — gamma rays: bursts — gravitation
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GRBs Need a Huge Reservoir of Energy

* From the redshift measurents (details later) <z> = 1~2 we know that GRBs are extra-
galactic and very far away at mean luminosity distance about 7~16 Gpc.

* The isotropic released energy is about ~10°* erg = 10* J (but 3 orders of magnitude,
not standard candles). This is as much as the Sun radiates in its lifetime (10 billion

years): L _(solar bolometric luminosity) = 4x10*° W, 10*° year = 3x10" s.

€ m*c2=E

1 raisin * ¢2 = nuclear 200 Earths * ¢2= GRB
bomb energy Energy

19=>20kt TNT, m___*c?=5x10*"J
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Short vs long Gamma-ray bursts (GRBs)
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Bimodality in Durations and Hardness Ratio

95% 9()»
* Fluence S = time-integrated flux F
- Hardness ratio H = fluence (AE,) / fluence (AE,) |
where energy range AE, > energy range AE, | 5%
- Duration T, is a characteristic length of a burst which contain 90 % . :
of the time-integrated flux, starting at 5 % and ending at 95 %.
30 DERELRLALL BRI B ALY l‘l’l T[T 11 lll!! e e
- : | ] "
25 Short - LongJ : N —
-'2 - GRBs GRBSE R I I I U S B B I R Y
3 °F E X T Hard short .
- o 3 i == Long softer -
° 15 — — * —%—, _
3 f ; o]
E 10 E 410 ¢
3 = -] .
z ~ -] ]
5k = :
_ OC .t v 1 venl |' pogol v erwend 3TN e o
0.01 010 1.00 10.00 100.00 1000.00 &« & 2 2 “ o001 010 1.00 10.00 100.00 1000.00

TQO sec. Number of Bursts Too(s)

« Distributioniof T90 duration‘forithe BATSE GREs Distribution of hardness ratio, which is ratio of fluences at
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Instruments
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Instrumentation - Space-Based Astronomy

* The sky is opaque at x-rays and gamma-rays (keV, MeV).
* Gamma-ray astronomy is a domain of balloons, rockets, satellites.

Gamma Ultraviolet Visible light

|4— rays —b-|4— X-rays —»l<"‘—n—| ”}-— Infrared —-—|4— Radio waves —-—|

Visible-ligH

80 Need rockets
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Half-absorption Altitude (kilometers)
o
o

26



Instrumentation - Example Missions

Compton Gamma-Ray Observatory (CGRO, 1991-2000) °* BeppoSAX (1996-2003)

BATSE (0.02-2 MeV), OSSE (0.05-10 MeV), * Near field and wide field-of-view instruments (0.1-300 keV)
COMPTEL (0.75-30 MeV), EGRET (20 MeV — 30 GeV) ° Precise localization lead to the identification of first X-ray
~2700 GRBs and optical counterparts (afterglows) to GRBs.

Neil Gehrels Swift Observatory (2004 — active) * Fermi (2008 — active)

Burst Alert Telescope (BAT, 15-150 keV) ¢ Gamma-ray Burst Monitor (GBM, 8 keV — 30 MeV)
X-ray Telescope (XRT, 0.2—10 keV) * Large Area Telescope (LAT, 20 MeV — 300 GeV)
UV/Optical Telescope (UVOT, 170—-650 nm) * Detection of electromagnetic counterpart to gravitational
Autonomously fast slewing observatory. wave source (NS-NS merger).

Other missions: Agile, CALET, INTEGRAL, HETE-2, Insight-HXMT, Lomonosov, MAXI, POLAR, RHESSI,

Suzaku, Wind/Konus, and more. 07



Interaction between photons and matter

Photo-absorption

Instrumentation - Detection of Gamma-Rays

Dominant process
In X - soft Gamma-ray
region

High-Z scintillator is
employed for gamma-ray
detector

Compton
Scattering
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Instrumentation - Crystal Scintillators

* Convert gamma-ray to optical photons, which are then collected and detected.

* Gamma-ray produces electron-hole pair (excitation, ionisation); recombination

produces a photon (fluorescence, often UV); registered with optical readout.

Y hv, =1 Me\

Incoming scintilator
Gamma-ay e.g Nal
| conduction band |
Scintillation Crystal
\ : -
\ 2lE=5ev ¢
=
-y | valence band |
EEh 20 eV ==

5-104 e /hole pairs

o Gamma+ay absorbed;
1( I‘ light emitted
I \ |

Photomultipliers detect light

Nal(Tl), Csl(Na), BGO, ...

Traditional photo-detectors

High density — great stopping power
Cheaper than semiconductors

* Worse energy resolution
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Instrumentation - Photomultiplier Tubes (PMTs)

Photons produce electrons at the photocathode (photoelectric effect).
Electrons are accelerated by an E-field.
Striking each dynode multiplies the number of electrons.

The final gain can be as high as 10".

About few ns response time.

~ Photoelectron

|
Photon . K/ Anode

_ Quiput dynode

Another type of detectors - thick semiconductor detectors:
- CdTe, CdZnTe, Si, Ge, ...

- pixilated readout, one channel per pixel

- typical thickness from 0.1 to several mm
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Localization techniques -
coded mask, orientation-sensitive multiple
detector technique, triangulation (IPN)
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Localization - Orientation-Sensitive Detection Technique

e Several detectors with different orientation is used.
* GRB positions are determined from relative signal between different detector modules.

A IS proportional
to cos®

Shield

CGRO One BATSE detector
module

* Fast, but typical error radius of a few degrees.
* CGRO/BATSE: 20-600 keV
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Localization - Scanning Collimator

* Uses a collimator with walls of absorbing/shielding material.

DETECTOR
CHARGED
ELECTRONICS PARTICLE
DETECTOR

COLLIMATOR
137

60Cco

> CPD PMT (4)
60Co /
ASSEMBLY & [ =
“on” DETECTOR
r/J "
off };L( MOUNT (2)
2y ~ 'Y ANNULAR »
SHIELD Nal (4) )
PHOSWICH [Nal MAGNETIC CONSTRUCTION MATERIAL
CRYSTAL |CsI SHIELD

MAGNETIC SHIELD

DOME pHoswWICH
PMT (7) ANNULAR SHIELD
PMT (12)

HVPS (12)

CGRO/OSSE: 50 keV - 10 MeV 2



Localization - Coded Mask Technique

detector

Mosaic mask with transparent and opaque tiles (e.g. W).
Structure to support mask and shield the detector (hopper).
Multi-pixel detector to record the shadow pattern.

Do cross-correlation between mask and shadow pattern.

——»  Good localization accuracy (~ arcmin) but limited
field-of-view (FOV).

i s Correlation image

GRB at zenith-30 and azimuth-130 - SNR map - zenith prejection

30—

.~ Coded aperture mask

- Detector plane

Shadow pattern —




Localization - Coded Mask Technique

Shadow pattern
DETECTOR

On-axis source Off-axis source
Fully Coded FOV Fully Coded FOV

Off-axis source Off-axis source
Fully Coded FOV Half Coded FOV
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Localization - Coded Mask Technique

Correlation Image Mask Pattern Open Fraction Matrix Detector Count Pattern
Cli,j] M[i+d,j+e] D[d,e]

P

Cli,jl = 2, | Mli+d,j+e] — O[i,j] | D[d,e]
d,ec Q,M
where Qli,j] = 1 Z M[i+d,j+e] Connell & Reglero 2013

N[, j] d,ecQ,M 36



Localization - Coded Mask Technique

* Coded masks can be big and have various shapes.

| » L
-

Credit: INTEGRAL/SP! team

--'-‘_l_“‘_‘__ul""

Credit: Swift/BAT tea
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Localization - Timing-Based (Triangulation) Technique

Simulated Light Curve (offset)

Localization by photon arrival time. o

50

40
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a
o
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© o o ¢
TTT \H‘\H‘H\‘\H‘H\‘H\ m&\\‘\\\\‘\\\\‘\\\HH‘HH‘HH‘ a

25

sat0 — sat3

R
® N & O ® O N A

)

L PR T—" M
0.6 0.7 0.8 0.9

Ohno et al. 2018

* Cross-correlate light curves from different pairs of satellites at different positions

to obtain the relative delays. .8



Localization - Timing-Based (Triangulation) Technique

GRB 170616A

0 T T T T T
N 'in“d K M ars-Odyssey (HEND )
1B \ 4
GRB |
cos 0,,=cAt,,/d,, 2r T
""""""""" =4
---- 2-3 annulus =
X ° 3 .
"""""""" e "‘:\__\:*\-“ —
cﬁ 12 x ......... NN
v dlz -f - N \-,__\‘.«;‘:‘i\
1 2 4k :
’ Wind (Konus: -INTEGRAL (SP \4 )
5 . 1 N 1 . 1 . "‘1 .  | M
1-2 annulus 116 115 114 113 112 111 110
3 o, deg

Hurley et al. 2013

* Used by Interplanetary Network (IPN) to localize GRBs by several spacecrafts, some
of them in the interplanetary space.

* WIND, INTEGRAL, RHESSI, Swift, AGILE, Fermi, etc.
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Compton Cone

Localization - Compton Scatter Telescopes

Cosmic
Source

Incident
Gamma

Photon
RS E Compton Scatter
Organic A
Liquid
Scintillator
Scattered
Gamma
Photon
Inorganic .
Crystal Photo-electric
Scintillator Absorption
COMPTEL

Gamma-ray

g Gamma-ray scattered;
light emitted.

Light recorded.

Gamma-ray absorbed,
light pulse emitted,
and recorded

X,

NASA’s Compton Gamma Ray Observatory

* Principle of a Compton telescope, such as CGRO/COMPTEL.: from the energy deposits of the
Compton scatter and photo-electric absorption, the angle ¢ can be calculated, and the source of
the incident photon is then constrained to lie on the Compton cone.

* For more than three scattered photons an unambiguous direction can be obtained.

measured parameters :

XY oo interaction location in D
E; : energy deposit in D,
Xo,Yo interaction location in D,
E, : energy deposit in D,

t, At arrival time, TOF D;-D,

Time-Of-Flight, coincidence

derived parameters :

X1,Y1:X0,Yo => XY

cosp = 1 - mgc?E, + mCYE+E,

encoding of the two dimensional source
distribution into a 3-D dataspace (X, ¥, ¢)

CGRO/COMPTEL:

R 0.8 - 30 MeV
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Instrumentation - MeV Gamma-ray Energy Loss Mechanisms

* For photons in matter above ~10 MeV, pair conversion is the dominant energy loss
mechanism.

* Pair conversion telescope.

0.10
06
P 0.08
= |
S 0.4 0.06 N
SO E
o o
v . Pair Cross-Section G.04
w 02— saturates at E, > 1 GeV
l_EJ . —0.02
W-electric
{ T e e Y ST I 1 1 ., — ! 1 {111l _
1 10 100 1000

E (MeV)

Fig. 2: Photon cross-section ¢ in lead as a function of photon energy. T.hé intensity of
photons can be expressed as I = lo exp (-ox), where x is the path length in radiation
lengths. (Review of Particle Properties, April 1980 edition).

Credit: Julie McEnery
NASA/GSFC
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Localization - Pair Conversion Telescope

The anti-coincidence shield vetos
r' . incoming charged particles.

photon converts to
an e+e- pair in one of ——— ;
pair . —
the conversion foils il
[T ——H_ The directions of the charged
particles are recorded by particle
§ tracking detectors, the measured
tracks point back to the source.

The energy is measured
in the calorimeter >

Fermi Large Area Telescope (LAT)
Precision Si-strip Tracker (TKR)
Csl Calorimeter (CAL)
Anticoincidence Detector (ACD)
20 MeV - 300 GeV

%Eg]'ounds Calorimeter B, =
Credit: Julie McEnery Credit: Fermi Team
NASA/GSFC
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Instrumentation - Neil Gehrels Swift Observatory

Launched 2004 and still active

Burst Alert Telescope (BAT)

- New CdZnTe detectors

- Detect >100 GRBs per year

- Most sensitive gamma-ray
imager ever

X-Ray Telescope (XRT)

- Arcsecond GRB positions

- CCD spectroscopy

- Photometry in the range
10-7-10-1% erg cm2 s

(UVOT) UV/Optical Telescope

- Sub-arcsec imaging

- Grism spectroscopy

- 24" mag sensitivity (1000s)

- Autonomous re-pointing,
20-100 s

- Onboard and ground triggers

Swift Instruments
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BAT Detector Array

oded Aperture Mask \

. Graded-Z
= Shield

Opiical
Bench

o~ Module
Control Bax

Power
Supply Box

el
\_-_——«’__,Jﬂxé;ﬁ

)
T ——————

DEC 18

Instrumentation - Neil Gehrels Swift Observatory

Burst Alert Telescope (BAT) N/ [

BAT Characteristics

E Range: 15-150keV ( -300)
E Resoln: 7 kev
Loc Resoln: 1-4 arcmin

22 arcmin

2 steradian field of view
32K CZT dets, 5200 cm?2
Autonomous operations A4



Instrumentation - Neil Gehrels Swift Observatory

BAT Detector Module (128 in array)

L P ——————. ’j

® > e S S
Frh e

, | ey

- it s o 2 g e el o |

, -

‘. "- . o - \.'.

r 1 :

Detector
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Instrumentation - Fermi

Fermi Instruments

* Launched 2008 and still active

* Large Area Telescope (LAT)
- 20 MeV - 300 GeV
- ~2.5 sr FoV

* Gamma-Ray Burst Monitor (GBM)
- 8 keV - 40 MeV
-9 sr FoV
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Instrumentation - Gamma-Ray Burst Monitor (GBM) on Fermi

* Large Area Telescope (LAT)

* 2 GBM BGO detectors
- 200 keV - 40 MeV
- 126 cm?2, 12.7 cm thick
- spectroscopy
- bridges gap between Nal and LAT

* 12 GBM Nal detectors
- 8 keV - 1 MeV
- 126 cm?2, 1.27 cm thick
- triggering, localization, spectroscopy
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Spatial distribution of GRBs - testing
homogeneity and isotropy
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Intensity Distribution: Homogeneity Test

* Debate between the Milky Way origin or the Extragalactic origin in 1980s and 1990s.
* Distribution of GRBs is inhomogeneous.
» The following test was proposed in 1980s: C, is the peak counting rate of a GRB, C;, is the minimum counting

rate to trigger the instrument (detector's threshold), V __ is the volume accessible to the instrument, Cp=kr =z

max
Ciim=Kl a2, V=431, V, . =4/3mr, .3 ——®» VIV, = (C/C;,)*?| (assuming GRBs as standard candle)

lim™ ™ max > lim

For homogeneous distribution in Euclidean space:
« |Log(n>C) x C,*2 and <VIV,,,> = 0.5

* Found: <V/Vmax> = 0.35 to 0.45 depending on instrument

T || L I 1 | 1 1 1
" n(>S) n(>pmox) n(>me)
0 -3/2 1r -3/2 1r -3/? .
s Pmax Nmux
io? b I 1l )
T::
>
o' b . 1t -
[ -
L ) {1k ]
=|
10 ! 1 1 1 1 1 e 1
- : i i 2 - n 4 1 2 3 4
o7 w® w6 et o’ w® w0 et w0 e 10t o
- -2 - -1
S,ERC CM ™ Prrax + ERC CM~ S Nmax « S

Cumulative size frequency distribution of the KONUS bursts versus fluence, peak

energy flux, and peak counting rate (Mazets 1985). 1



Intensity Distribution: Homogeneity Test

bl . '. .
. tee o‘._‘.
- ,‘__:':' e _.a ¢
-
SR P 3 IO P
oL ey
. . cea™,

) ) Rg: Homogeneous
Rg: Isotropic -levlu.\ln
o . P j

= Y

o5 PR

og (N> P)

1
i

log P
Rp: Inhomogeneous

log (N > P)
—r Ea e e
1

S ST UG

log P
Figure 1.15. This is the schematic illustration done by Briggs (1995) of the model constraints
imposed by observing the 2D angular distribution and the intensity distribution of GRBs. The
top panel shows a cross-section through a postulated exponential disk population of GRB
sources. The dashed line is the Galactic plane and the star % the solar system. The circles
indicate the spherical volumes in which sources are detected. Rg corresponds to the accessible
volume for an instrument of poor sensitivity, Rp is the volume which can be observed by
another instrument with better sensitivity. The lower panels show the angular and intensity
distributions of the GRBs detected by the two instruments. On the left the location of GRBs is
given in galactic coordinates. The anisotropy of the distribution invisible for the RS case begins
to be detected in the second case, the instrument being observing beyond the scale height of the
sources distributed along the Galactic plane. This difference is also visible in the intensity
distribution on the right (log N-log P curves). In the R case the distribution has a deficit for the
low P because the instrument is able to detect sources in regions where there are few sources, as
can be seen in the top panel.

Vedrenne and

Atteia et al. 2009
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Sky Map of GRBs

Vedrenne and
Atteia et al. 2009

The first galactic map of GRBs

DISTRIBUTION OF TRANSIENT G-RAY SOURCES

AITOFF PROJECTION Figure 1.14.
CENTERED AT L=0, B=0 (GALACTIC COORDINATES) Maps of GRBs
0 localized b
The sky map of GRBs localized by 1976 xonus
(Klebesadel and Strong 1976). (Mascts ot o,

1981b, panel a)
and by the IPN
(Atteia et al. 1987, -
panel b). The two
distributions are
merged in the
bottom panel (c)
which contains
171 GRBs
(Vedrenne 1991).

(a)

(b)




Sky Map of GRBs

* The dipole and quadrupole statistics were used to test the large-scale isotropy of 1005 GRBs observed by
BATSE.

* It was found that GRB locations were consistent with isotropy.

* The observed Galactic dipole moment <cos 6> differs from the value predicted by isotropy by 0.9 ¢ and the
observed Galactic gadrupole moment <sin2 b - 1/3> by 0.3 o, where 6 is the angle between a GRB and the
Galactic center and b is Galactic latitude.

* GRBs were found to be distributed much more isotropically than any other observed Galactic population
strongly suggesting their cosmological origin.

Vedrenne and
Atteia et al. 2009

Sky distribution of the 1005 GRBs in an Aitoff-Hammer projection in galactic
coordinates regardless of the trigger energy range (Briggs et al. 1996). The apparent isotropy of
the distribution has been confirmed by the calculation of its first moments.

« Later works indicated that distribution of short GRBs (74,<2s) can be anisotropical (Balazs et al. 1998, 1999;
Magliocchetti et al. 2003; Vavrek et al. 2008; Tarnopolski 2017). 52



Sky Map of GRBs

* It can be also tested if the fluxes, fluences (at various energy ranges) and durations of GRBs are
distributed isotropically and it seems that they are distributed isotropically (Ripa and Shafieloo
2017 and 2018 arXiv:1809.03973).

Fermi/GBM, Galactic coord., Aitoff project.
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