Homework

Hint

Homework

 Data file grb_data_homework.dat will be uploaded to the course's website and it contains a count rate curve of a detected GRB at three energy bands.

- In one figure plot count rate curves (cnt/s) for each energy band.
- Do linear least-squares fit to the background using the pre-burst data (beginning to -40.15 s) and post-burst data (60.05 s to end) together. Do fitting for the three bands separately.
- Subtract fitted background models from the data (again separately for three bands).
- Calculate the start time and end time of T_{90} duration using added count curves of three bands together (10-300 keV), calculate also the T_{90} duration itself and use background-subtracted count rate curves.
- Plot background-subtracted count rate curves (cnt/s) for three bands separately and mark T_{90} start and end.
- Calculate peak count-rates F (cnt/s) using the background-subtracted count rate curves for each energy band separately.
- Calculate total number of counts S (analogy to fluence) during T_{90} using the background-subtracted count rate curves for each energy band separately.
- Calculate hardness ratio H = S(50-300 keV) / S(10-30 keV).
- Compare H for this burst with other bursts shown on the figure H vs T_{90} of Fermi/GBM GRBs in this presentation and decide, based on duration and spectral hardness, if this GRB is most likely produced by a merger of compact objects or by a collapse of a massive star.