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Syllabus

• Lecture 1: Introduction. Cosmic Rays. Gamma rays. Synchrotron
radiation

• Lecture 2: Derivation of the Universal power law of accelerated
particles.

• Lecture 3: The Fokker-Planck equation and its solutions.
Phenomenology of efficient accelerators.
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Introduction



Multi-messenger Astronomy

Photons • Cosmic Rays • Neutrinos • Gravitational Waves
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The multi-messenger spectrum...

...of the non-thermal
Universe

• Cosmic Rays
• Photons (γ rays)
• Neutrinos (ν)

Evoli, 2018
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Cosmic rays



Cosmic rays

Charged particles arriving on Earth
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Cosmic rays detection

Direct observation of cosmic rays is possible only above the Earth’s
atmosphere

• First detection by Hess
in 1912

• Balloon at 5300 metres
altitude

• Hess shared the 1936
Nobel prize for this
discovery
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Detection of high energy cosmic rays

• About 200 low-energy cosmic rays strike every square meter of
the Earth per second

• Above 1018 eV, only one particle/week falls on an area of 1 km2

• Above 1020 eV, only one particle/century falls on a km2

• To find and measure these rare events we need a giant detector

Because high-energy cosmic rays are very rare, it would be
impossible to capture a significant number of them on a balloon,
and therefore we detect them at the Earth’s surface
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Air showers

• Cosmic ray collisions with Earth’s atmosphere molecules initiate
cascades of secondary particles
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Cosmic ray detection

The Pierre Auger Observatory (Malargue, Argentina)
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The Pierre Auger Observatory

• 1600 particle detector covering about 3000 km2

• Each 11000-liter tank is filled with 12 tons of pure water
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The Pierre Auger Observatory

Cosmic Rays with E > 1018 eV are extragalactic (no excess on the
galactic plane)

Pierre Auger collaboration (2017)
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The multi-messenger spectrum: photons

Isotropic Diffuse
Gamma-Ray
Background (IGRB):

• Extragalactic
emissions too
faint or too
diffuse to be
resolved in a
survey

• Residual
Galactic
foregrounds
that are
approximately
isotropic

Evoli, 2018
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Gamma ray emission



Gamma ray emission

The gamma ray emission is non thermal!

• Black body Eγ = 2.7κT⇒ Eγ
GeV ∼ T

1013K

Emission processes

Hadronic

• Proton-proton collisions: p+ p −→ p+ p+ aπ0 + b(π+ + π−)

• Proton-photon: p+ γ −→ p+ aπ0 + b(π+ + π−)

π0 −→ γ + γ π± −→ µ± + ν̄µ(νµ)

Leptonic

• Inverse Compton scattering: e− + γ −→ e− + γ

• Relativistic Bremsstrahlung
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Gamma ray detection: from space (Eγ < 100 GeV)

The Fermi satellite
was launched in
2008

14



The Fermi bubbles

• Fermi satellite greatest discovery (the unexpected!)
• The origin of this emission is still unclear
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Ground-based gamma-ray astronomy (Eγ < 100 GeV)

• γ rays moves moves faster
than the speed of light in the
Earth atmosphere

• Production of air shower
• Optical Cherenkov light
• It’s possible to track the γ-ray
arrival direction
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Ground-based gamma-ray telescopes

Veritas (Arizona) • MAGIC (La Palma) • HESS (Namibia)
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The forthcoming CTA (Cherenkov Telescope Array)

CTA Paranal (expected)
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The electromagnetic spectrum

is also non−thermal

Synchrotron emission 
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Radio (synchrotron) emission



Radio astronomy

Development of radio astronomy after the second world war

Radio data is an excellent tool to study the conditions in the plasma
(magnetic and non-thermal energy content)

The Very Large Array (VLA) 20



Synchrotron emission basics

Synchrotron emission is produced by electrons and protons
interacting with a magnetic field B⃗.

• Intensity I ∝ (me/mp)
3 ∼ 10−9 ⇒ Leptonic synchrotron emission

is more important than hadronic
• B > Bcr ∼ 4.4× 1013 G: quantum effects are important and
synchrotron radiation from protons becomes relevant

Radioagalaxy Cygnus A
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Synchrotron emission is beamed

Semi-opening angle χ/2 ∼ 1/Γ, Γ = E/(mc2)
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Synchrotron power

• Single electron’s power:

Psynchr(E, Eph) =
1
h

√
3e3

mec2
B⊥

Eph
Ec

∫ ∞

Eph/Ec

K5/3(ζ)dζ

• Modified Bessel function (second kind):

Eph
Ec

∫ ∞

Eph/Ec

K5/3(ζ)dζ ∼ 1.85
(
Eph
Ec

)1/3
exp

(
−Eph
Ec

)

Psynchr(Ee, Eph) peaks at
Eph ∼ 0.3Ec

Photons characteristic energy:
Ec(E) = 5.1× 10−8 B E2 erg
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Synchrotron cooling

• Energy losses:

dE
dt

∣∣∣∣
synchr

≡ −Psynchr(E) = −
∫
Psynchr(E, Eph)dEph

• Cooling time:

tsynchr =
1

dE/dt =
2π
3 cσT

(mec2)2
E B2 ∼ 4.1× 102

B2 E s

Synchrotron losses are not catastrophic!

Ec
eV ∼ 5× 10−6

(
B

100µG

)(
E

GeV

)2

24



Observed spectrum....is a power law!
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Synchrotron emission from an ensemble of electrons N

Psynchr(Eph) =

∫ Emax

Emin

Psynchr(E, Eph) N(E)dE

A power-law electron energy distribution produces a power-law
spectrum
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Power laws

• The spectrum of cosmic rays arriving on Earth is a (broken)
power-law energy distribution

• The spectrum of relativistic electrons in the source is also a
power law

What is the physical mechanism that accelerate particles that
follows a power-law energy distribution?
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Particle acceleration



fermi’s original idea (1949)

• Two magnetized clouds moving to
each other

• This scenario is not very common in
the Universe

• Inefficient energy gain
∆E
E ∝

(v
c

)2
≪ 1
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Including shocks (1954)

But... he didn’t perform the calculations
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Derivation of the Universal power law (70’s)

• Axford, Leer & Skadron
1977

• Krymskii 1977
• Bell 1978a,b
• Blandford & Ostriker
1978

Bell 1978b
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Diffusive Shock Acceleration (DSA) - Fermi I

Shocks are very common in the Universe!

• Particles diffuse back and
forth the shock due to
magetic instabilities in the
plasma

• Efficient energy gain

∆E
E ∝ vshock

c

• Magnetic field amplification
by Cosmic Rays itself! (Bell
2004)

RCW 86 (Chandra and
XMM-Newton X-ray data) - J. Vink
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Particle energy distribution in astrophysical plasmas

Two main unknowns

• The minimum energy of electrons (injection problem)
• The maximum energy (Ultra High Energy Cosmic Rays)
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Questions?
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