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Syllabus

• Lecture 1: Introduction. Cosmic Rays. Gamma rays. Synchrotron
radiation

• Lecture 2: Derivation of the Universal power law of accelerated
particles.

• Lecture 3: The Fokker-Planck equation and its solutions.
Phenomenology of efficient accelerators.
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The multi-messenger spectrum...

...of the non-thermal
Universe

• Cosmic Rays
• Photons (γ rays)
• Neutrinos (ν)

Evoli, 2018
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Shocks



Collisionless shocks

Astrophysical shocks1 are collisionless

• Shock transition region: ∆x≪ Coulomb collisions length

1Supersonic plasma
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Fluid equations in both side of the shock

We set a perturbation in all the parameters, ζ = ζ0 + ζ̃ , and then ζ̃

satisfies the wave equation ∇2ζ̃ − 1
C2

∂2ζ̃
∂t2 = 0

• Conservation of mass
ρ1v⃗1 = ρ2v⃗2

• Conservation of momentum

ρ1v21 + P1 = ρ2v22 + P2

• Conservation of energy

γad P1
(γad − 1)ρ1

+
1
2v

2
1 =

γad P2
(γad − 1)ρ2

+
1
2v

2
2

γad : adiabatic index
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Rankine-Hugoniot relations

• Density and velocity

ρ2
ρ1

=
v1
v2

=
(γad + 1)M2

1
(γad − 1)M2

1 + 2

• Pressure
P2
P1

=
2γadM2

1 − (γad − 1)
γad + 1

• Temperature (T2 = P2/(KBn2))

T2
T1

=
[2γadM2

1 − (γad − 1)][(γad − 1)M2
1 + 2]

(γad + 1)2M2
1

Mach number M1 = v1/Cs = v1/
√
γadP1/ρ1
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Strong shocks

In the limit of strong shocks (M0 ≫ 1) and γad = 5/3

lim
M1→∞

ρ2
ρ1

=
γad + 1
γad − 1 = 4

Therefore ...
ρ2 = 4ρ1 and v2 =

v1
4

P2 =
3
4ρ0v

2
1 and T2 ∼ 2× 10−9v21 K
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Shocks are very common in the Universe!

Shocks are the main source of Cosmic Rays!

RCW 86 (Chandra and XMM-Newton X-ray data) - J. Vink
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Diffusive Shock Acceleration



Diffusive Shock Acceleration (DSA) - Fermi I

• Cosmic rays are isotropic on either side of the shock due to
small angle scattering off magnetic field fluctuations

• Isotropization allows particles to cross the shock more efficiently
• Every times the CR crosses the shock, a net energy gain is
received

• The resulting spectrum of particles is independent of the
diffusion regime

• The acceleration efficiency depends on the scattering efficiency

shock
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Derivation of the Universal power law (70’s)

Microscopic approach
• Bell 1978a,b

Macroscopic approach
through the Fokker-Planck
equation
• Axford, Leer & Skadron
1977

• Krymskii 1977
• Blandford & Ostriker
1978

Bell 1978b
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Tony Bell’s approach

Evaluation of the number of particles located at the shock versus the
number of particles that escape downstream. Only particles that do
not escape are reaady for one more cycle of acceleration

• u1 : Upstream velocity
• u2 : Downstream velocity
• vsh = u1 : Shock velocity

Flux of particles passing from upstream to downstream with velocity
v:

F = n0
1
4π

∫
(U1 + v cos(θ)) 2π d cos(θ) ∼ n0

v
4
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Return probability

• Pesc is the probability to escape
downstream

• Pret = 1− Pesc is the probability to
cross the shock back to the
upstream shock
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Flux of particles passing from upstream to downstream: n0 v4
Flux of particles escaping downstream: n0u2

Pescn0
v
4 = n0u2 ⇒ Pesc = u2

4
v

Note that if v ∼ c and u2 ≪ c, then Pesc ∼ 0 and Pret ∼ 1
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Energy transformation

• Energy transformation

E′ = γ(E+ vshp cos(θ))

Non relativistic shock, γ ∼ 1 and E = pc. Therefore,

E′ − E =sh p cos(θ) ⇒
∆E
E =

vsh
c cos(θ)

• Fractional energy change when the particle goes from upstream
to downstream ⟨

∆E
E

⟩
ups→downs

=
2
3
vsh
c

• Fractional energy change when the particle goes from upstream
to downstream and back to the upstream (1 cycle)⟨

∆E
E

⟩
cycle

= 2
⟨
∆E
E

⟩
ups→downs

=
4
3
vsh
c
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Spectrum of particles

After k cycles, the energy of particles is increased by

E = E0(1+
⟨
∆E
E

⟩
cycle

)k

ln

(
E
E0

)
= k ln

(
1+

⟨
∆E
E

⟩
cycle

)
where

k =
ln(E/E0)

ln
(
1+ ∆E

E
) ,

and

⟨
∆E
E

⟩
cycle

∼ 4
3

(
ξ − 1
ξ

)
Vs
c
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Spectrum of particles

J ∝ (1− Pesc)
k

J = k(1− Pesc)
ln(E/E0)

ln(1+∆E/E) ; C = cte

ln J = C′ + ln(E/E0)
ln(1+∆E/E) ln(1− Pesc); C′ = ln(c) = cte

Finally
J = c′′ − (Γ− 1) ln(E);

where

Γ = 1− ln(1− Pesc)

ln(1+∆E/E) = 1−
ln(1− 4 Vsh

ξ v )

ln(1+ 4
3
(ξ−1)

ξ
Vsh
c )

.

15



Spectrum of particles

If x ∼ 0:

ln(1+ x) ≈ x− x2
2 + . . . and ln(1− x) ≈ −x+ x2

2 − . . . ,

therefore

Γ ≈ 1−
− 4Vs

ξv
4
3
(ξ−1)

ξ
Vs
c

Γ ≈ 1+ 3
β(ξ − 1)

β ∼ 1 =⇒ Γ =
ξ − 1+ 3
ξ − 1

Γ =
ξ + 2
ξ − 1

J(E) ∝ E−Γ

Strong shock
ξ = 4 =⇒ Γ = 2 16



Maximum energy of particles



Acceleration timescale

The spectrum of accelerated particles doesn’t depend of the
diffusion regime. However.... the acceleration time does

• Particles moving in a turbulent magnetic field diffuse on a
times-scale tdiff = R2/D, where R is the diffusion length

• The diffusion coefficient is D = λc/3, where λ is the mean free
path

• D is a big unknown in CR physics. We assume that D ∝ Eδ

• Bohm diffusion regime2: DBohm = rgc/3

2rg = E/qB is the Larmor radius of a relativistic particle
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Cycle timescale

Balance between away from the shock upstream and advection
downstream creates a CR precursor located at L = Du

u upstream of
the shock

• Flux of particles passing from upstream to downstream: n0 c4
• Number of CR in the precursor per unit area: n0L
• Average time a particle spend upstream: tu ∼ n0L

n0c/4 = 4Du
uc

Similarly...

• Average time a particle spend downstream: td ∼ 4 Dd
udc

Cycle time between upstream and downstream:
tcycle = tu + td = 4

(
Du
U + Dd

ud

)
1
c
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Acceleration timescale

• Energy gain per cycle:⟨
∆E
E

⟩
cycle

=
4
3
v
c ∼ v

c

• Acceleration timescale

tacc = tcycle

⟨
∆E
E

⟩
cycle

∼ 4Du + 4Dd
u2

by assuming Bohm diffusion: Du = DBohm = rgc/3 = (E/qB)c/3, and
therefore Dd ∼ Du/4 (B-compression at the shock)

tacc =
8
3

E
Bv2sh
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Maximum energy

we balance tacc with cooling and dynamical timescales

• Lifetime of the source
• Radiative cooling
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The Hillas energy

Larmor radius (rg = E
ZqB ) = size

of the source (L)(
B

100µG

)
= 1

Z
( E
100EeV

) ( L
kpc

)−1

Hillas upper-limit on the
maximum energy:

(
EH

100EeV

)
= Z

( v
c
) ( B

100µG

)(
L

kpc

)
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Questions?
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