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Course overview

1. Motivation - why do we study icy moons.
History of exploration - telescope observations, spacecraft missions.
Surface characteristics - composition, age, and morphology.

2. Interior structure - layered models: from gravity, shape, composition.
Hydrosphere structure - H2O phase diagram, presence of oceans.
Preferred models for selected satellites.

3. Dynamics of the different planetary layers.
Thermal evolution - heat sources, heat transfer.
Melting/crystallization, anti-freezers.
Implications for the long-term stability of subsurface oceans.

4. Selected applications.
Overview of future missions.
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Habitability requirements
1. material: C, H, N, O, P, S (∼98% of bio molecules on Earth)
2. solvent to speed up reactions - liquid water, ...?
3. energy source to sustain metabolism
4. stable environment

→ goal of interior structure modeling is to characterize the ocean and
the water/rock interface
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Interior structure of the Earth
▸ layered - spherical shells (crust, mantle, outer & inner core)
▸ layering inferred using the travel times of seismic waves:
- body waves: longitudinal P-waves, shear S-waves
- velocity different in each layer, no shear waves through outer core
- reflections & refractions
+ other waves (surface waves, free oscillations, ...)

Stein & Wysession (2003)
Preliminary Reference Earth Model
(Dziewonski & Anderson, 1981)



Interior structure of icy moons
(Hussmann +, 2015)

▸ no measurements by seismic network → main clues:
1 radius (size) and mass
2 gravity field
3 rotational state and shape
4 magnetic field
5 surface temperatures and heat flow
6 composition of surface and atmosphere
7 activity at the surface

▸ mass + size → average density (important indicator of composition)
▸ size + mass + gravity field → moment of inertia (MoI)
▸ density + MoI → simple structural models of interior
▸ shape - can further confirm/reject the model (consistent or not)
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Size, shape, mass, and gravitational field - measurements
(Hussmann +, 2015; Schubert +, 2009)

size
▸ direct observations of satellite’s surfaces by spacecraft imaging
systems and ground-based telescopes → physical size

▸ radius of Titan’s solid surface buried beneath 100s km of atmosphere
first revealed by radio occultation performed by Voyager 1

shape
▸ from pictures of the moon acquired by the spacecraft imaging system
▸ radar altimeter (Titan)

mass

& gravitational field (2)

1 visual observations of satellite motions (Earth-based / spacecraft)
→ identification of mutual gravitational interactions among satellites or

between satellites and the parent planet
2 radio tracking of the spacecraft path during the moon flyby
→ gravitational pull on spacecraft → acceleration/decceleration
→ Doppler shift of radio communication signal recorded by Earth’s DSN
→ Doppler data inversion → characteristics of gravitational field
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Average density
(Hussmann +, 2015)

▸ mass + size → average density ρ = 3M
4πR3

→ important indicator of composition



Average density and ice mass fraction
(Hussmann +, 2015)

▸ main composition (∼abundances of outer solar system nebula)
- rock (including iron): olivine (Mg2+,Fe2+)2SiO4, pyroxenes
XY(Si,Al)2O6, serpentines (Mg,Fe)3Si2O5(OH)4, ...

- nonporous ice/water

▸ density in each layer ∼ constant (neglect of compression effects)

M = 4
3
πρR3 = Mr +Mi = ρrVr + ρiVi =

4
3
π[ρrR3

r + ρi(R3 − R3
r )]

ρR3 = ρrR3
r + ρi(R3 − R3

r )

▸ water/ice density ρi∼1000 kg m−3 (well constrained)
▸ rock density ρr∼2500 (hydrated rock) – 8000 kg m−3 (pure iron)
▸ nonhydrated rock ρr∼3500 kg m−3 (close to ρIo)

Rr = R( ρ − ρi

ρr − ρi
)

1/3

▸ rock and ice mass fractions can be determined from the density
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Average density and ice mass fraction
(Hussmann +, 2015; Iess +, 2014; Durante +, 2019)

▸ assuming complete differentiation into a rock core and an icy mantle

▸ ρ = 3M
4πR3

▸ ρr∼3500, ρi∼1000: Rr = R( ρ−ρi
ρr−ρi

)
1/3

▸ di = R − Rr
▸ Mi = 4

3πρi(R3 − R3
r ), mi = Mi

M

Europa Ganymede Enceladus Titan
M [1022 kg] 4.8 14.8 0.01 13.5
R [km] 1565 2631 252 2575

ρ [kg m−3] 2990 1940 1492 1888
Rr [km] 1450 1899 147 1823
di [km] 115 732 105 752
Mi [1022 kg] 0.3278 4.7602 0.0054 4.6126
mi [%] 7 32 54 34
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Average density and ice mass fraction
(Hussmann +, 2015)

▸ degree of differentiation (complete or homogeneous ice-rock
mixture) has to be inferred from spacecraft flybys



Hydrostatic equilibrium and satellite shape
(Schubert +, 2009; Hemingway +, 2018)

▸ interior of large planetary bodies: high pressures + low viscosities
→ relaxation to hydrostatic shape = shape of strengthless fluid body

(inward gravity acceleration balanced by fluid pressure gradient):

dP = −ρ(r)g(r)dr

▸ hydrostatic shape:
- selfgravitation alone: sphere
- rotation: centrifugal flattening
- synchronous rotation with
parent body (tidal locking):
permanent elongation along the
tidal axis

▸ tidal + rotational deformation
→ satellites relax to a 3-axial
ellipsoid (a > b > c)
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Hydrostatic equilibrium and satellite shape
(Schubert +, 2009; Hemingway +, 2018)

▸ satellite shape can provide additional clues on the interior structure
▸ accurate measurements of shape can provide evidence for (or
against) the hydrostatic state obtained by the satellite

b − c
a − c

= 1
4

▸ deviations from hydrostatic state e.g. due to internal activity,
incomplete relaxation, ’frozen in’ structure, ...

▸ hydrostatic shape → hydrostatic gravitational field
▸ nonhydrostatic shape + hydrostatic gravity field → compensation:
gravity anomaly due to shape reduced by internal density anomaly
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Gravitational potential
▸ Newton integral

V (r , θ, φ) = G ∫
Ω

dm(r ′, θ′, φ′)
∣r⃗ − r⃗ ′∣

= G ∫
R

0
∫

π

0
∫

2π

0

ρ(r ′, θ′, φ′)
∣r⃗ − r⃗ ′∣

(r ′)2 sin θ′dr ′dθ′dφ′

▸ expansion into series of spherical harmonic functions

V (r , θ, φ) = GM
r

∞

∑
j=0

(R
r
)

j j

∑
m=0

Pjm(cos θ)[Cjm cosmφ + Sjm sinmφ]

▸ Pjm(ξ): associated Legendre functions:
Pjm(ξ) = (1 − ξ2)m/2 dm

dξm Pj(ξ)
▸ Pj(ξ): Legendre polynoms:

Pj(ξ) = 1
2j j!

d j

dξj (ξ
2 − 1)j

▸ Cjm, Sjm: harmonic coefficients
(j degree, m order); note Sj0 = 0 ∀j
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Harmonic coefficients - meaning

V (r , θ, φ) = GM
r

∞

∑
j=0

(R
r
)

j j

∑
m=0

Pjm(cos θ)[Cjm cosmφ + Sjm sinmφ]

j = 0 potential of point of mass M in the origin of coordinate system:
C00 = 1, S00 = 0

j = 1 position of center of mass wrt to the origin:
C11 = x

R , S11 = y
R , C10 = z

R
specially choose: origin in the center of mass
→ C11 = S11 = C10 = 0

j = 2 components of the moment of inertia tensor I :

C20 = −
1

MR2 [Izz −
Ixx + Iyy

2
]

C21 =
Ixz

MR2 , S21 =
Iyz

MR2

C22 = −
1

4MR2 (Ixx − Iyy), S22 =
Ixy

MR2

specially choose: coordinate axes = principal axes of I
→ C21 = S21 = S22 = 0
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Synchronously rotating satellite in hydrostatic equilibrium
(Schubert +, 2009; Hemingway +, 2018)

C20 = −
1

MR2 [Izz −
Ixx + Iyy

2
], C22 = −

1
4MR2 (Ixx − Iyy)

▸ principal moments of inertia: C > B > A
▸ C = Izz , B = Iyy , A = Ixx

▸ dynamical polar flattening J2:

J2 = −C20 =
1

MR2 [C − A +B
2

]

- mainly caused by satellite’s rotation
- best determined with a polar flyby
▸ equatorial bulge C22:

C22 =
1

4MR2 (B −A)

- pointing toward the primary due to tidal interaction
- best determined by equatorial flyby
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Tidal & rotational disturbing potential
(Schubert +, 2009; Hemingway +, 2018)

▸ tidal & rotational forces:
→ deviation from spherical

symmetry
→ disturbances in the potential

field

▸ centrifugal disturbing potential at the surface:

Vr(θ, φ)∼
1
3
ω2R2P20(cos θ)

▸ tidal disturbing potential (neglecting terms ∼e)

Vt(θ, φ)∼
GMpR2

a3
p

[1
2
P20(cos θ) −

1
4
P22(cos θ) cos(2φ)]

(ap distance to tide-raising body, Mp its mass)
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Tidal & rotational disturbing potential
(Schubert +, 2009; Hemingway +, 2018)

▸ rotation coefficient qr (deformation due to rotation)
- equatorial centrigual potential vs gravitational potential at surface
- symmetry axis: the polar (z) axis

qr =
ω2R2

GM/R = ω
2R3

GM

▸ tidal coefficient qt (deformation due to tides):
- surface tidal potential vs gravitational potential at surface
- symmetry axis: the sub-primary line (x axis)

qt = −3
GMpR2/(ap)3

GM/R = −3( R
ap

)
3 Mp

M
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Synchronously rotating satellite in hydrostatic equilibrium
(Schubert +, 2009; Hemingway +, 2018)

▸ Kepler’s 3rd law:

(ap)3

T 2 = (ap)3n2

4π2 = G(Mp +M)
4π2 ∼GMp

4π2

▸ synchronous rotation: n = ω → (ap)3 = GMp
ω2

qt = −3(
R
ap

)
3 Mp

M
= −3R3ω2

GMp

Mp

M
= −3R3ω2

GM
= −3qr

▸ magnitudes of rotational and tidal deformation differ by a factor of 3
▸ opposite sign: flattening vs bulge

Europa Ganymede Enceladus Titan
R [km] 1565 2631 252 2575
ω [10−5 s−1] 2.0 1.0 5.3 0.5
GM [103 km3 s−2] 3.2 9.9 6.7 9.0
qr [10−4] 5.0 1.9 67.5 0.4
qt [10−4] −15.0 −5.7 −202.5 −1.2

≪1
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Synchronously rotating satellite in hydrostatic equilibrium
(Hubbard & Anderson, 1978)

▸ qr , qt≪1 → first-order theory of figures:

J2 =
1
3
kf (qr −

1
2
qt), C22 = −

1
12

kf qt

▸ fluid Love number kf :
- depends on distribution of mass within the satellite
- kf = 3

2 for constant density
▸ synchronously rotating satellite (qt = −3qr )

J2 =
5
6
kf qr , C22 =

1
4
kf qr

▸ relation between gravity coefficients

J2 =
10
3

C22
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Determining J2, C22

, and C

(Schubert +, 2009)

▸ determination of coefficients Cjm and Sjm from Doppler data
▸ number of independent coefs ∝ number of flybys & geometry:
- the best configuration: spacecraft in polar orbit
- several flybys / orbiter → J2 and C22 can be inferred independently

Galileo 2 or at most a few flybys → J2 and C22 are not independent
→ hydrostatic equilibrium used as a reasonable first order estimate
→ J2 = 10

3 C22 imposed to determine J2 and C22 from Doppler data
Cassini J2 and C22 determined nearly independently, their ratio close to

hydrostatic equilibrium (Iess +, 2014; Durante +, 2019)
▸ Doppler → C22 → kf = 4C22

qr

→ polar moment of inertia C

▸ Radau-Darwin equation:

C
MR2 = 2

3
[1 − 2

5
(4 − kf

1 + kf
)

1/2

]
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Two/three-layered models
▸ core (ρc=ρm, Rc=Rm), hydrosphere / core, mantle, hydrosphere

▸ mass

M = Mc +Mm +Mh =
4
3
π[ρcR3

c + ρm(R3
m − R3

c ) + ρh(R3 − R3
m)]

▸ polar moment of inertia

C = ∫
Ω
ρ(x2 + y2)dΩ = ∫

R

0
∫

π

0
∫

2π

0
ρ(r)r2 sin θ2r2 sin θdrdθdφ

= 8π
3 ∫

R

0
ρ(r)r4dr = 8π

15
[ρcR5

c + ρm(R5
m − R5

c ) + ρh(R5 − R5
m)]

▸ reduced moment of inertia (MoI)

MoI = C
MR2 = 3C

4πρR5 = 2
5

1
ρR5 [ρcR5

c + ρm(R5
m − R5

c ) + ρh(R5 − R5
m)]

▸ constant density (ρc = ρm = ρh = ρ): MoI = 2
5

▸ MoI < 2
5 : increase of density with depth (differentiation)
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Two/three-layered models

▸ two-layered models:
- data: M, C
- 3 unknown parameters: Rc , ρc , ρh

(a) 1 parameter needs to be fixed (e.g. ρh)
2 other parameters are computed (Rc , ρc)

(b) forward modeling: set of possible models that satisfy data

▸ three-layered models:
- data: M, C
- 5 unknown parameters: Rc , ρc , Rm, ρm, ρh

(a) 3 parameters need to be chosen (e.g. ρc , ρm, ρh)
2 other parameters are computed (Rc , Rm)

(b) forward modeling: set of possible models that satisfy data
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Results of layered models: Europa
(Anderson +, 1998) - 4 gravity flybys

▸ MoI = 0.346 → differentiated (mass concentration toward center)

▸ 2-layered models: ρc > 3800 kg m−3 > ρIo

→ enrichment in dense metallic phases wrt Io by ≳12%: unlikely
→ separation into metallic core and rock mantle more likely
▸ 3-layered models:
- Rc uncertain (Fe vs Fe-FeS), could be as large as ∼0.5R
- silicate mantle
- hydrosphere thickness between 80 and 170 km



Results of layered models: Europa
(Anderson +, 1998) - 4 gravity flybys

▸ MoI = 0.346 → differentiated (mass concentration toward center)
▸ 2-layered models: ρc > 3800 kg m−3 > ρIo

→ enrichment in dense metallic phases wrt Io by ≳12%: unlikely
→ separation into metallic core and rock mantle more likely

▸ 3-layered models:
- Rc uncertain (Fe vs Fe-FeS), could be as large as ∼0.5R
- silicate mantle
- hydrosphere thickness between 80 and 170 km



Results of layered models: Europa
(Anderson +, 1998) - 4 gravity flybys

▸ MoI = 0.346 → differentiated (mass concentration toward center)
▸ 2-layered models: ρc > 3800 kg m−3 > ρIo

→ enrichment in dense metallic phases wrt Io by ≳12%: unlikely
→ separation into metallic core and rock mantle more likely
▸ 3-layered models:
- Rc uncertain (Fe vs Fe-FeS), could be as large as ∼0.5R
- silicate mantle
- hydrosphere thickness between 80 and 170 km



Results of layered models: Ganymede
(Anderson +, 1996) - 2 gravity flybys

▸ MoI = 0.3105 → strongly differentiated
▸ among the smallest value in the Solar System (cf. Earth 0.334)
▸ average density → thick hydrosphere
▸ detected intrinsic magnetic field (Kivelson +, 1996) → metallic core

▸ 3-layered models (more likely):
- metallic core of radius 400–1300 km (Fe vs Fe-FeS composition)
- silicate mantle
- hydrosphere ∼800 km
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Results of layered models: Enceladus
(Iess +, 2014; Hemingway +, 2018) - 3 gravity flybys

▸ MoI = 0.335 → mildly differentiated

▸ Cassini: more precise, nearly independent measurements of J2 & C22

▸ J2/C22 = 3.51 > 10/3: mild deviation from hydrostatic equilibrium
▸ shape: a − c = 6.00 km, b − c = 2.07 km
→ (b − c)/(a − c) = 0.345 > 0.25: considerable excess flattening
▸ nonhydrostatic contribution of shape to gravity small: compensation?
(∼ gravity anomaly associated with shape must be reduced by
internal density anomaly)

▸ 2-layered models:
- low core density of ∼2400 kg m−3

- hydrosphere ∼60 km
- compensation depth ∼30–40 km: thickness of ice crust?
- negative mass anomaly in the South polar region - regional sea?
→ regional vs global ocean? cannot be answered with gravity data
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Results of layered models: Titan
(Durante +, 2019) - 10 gravity flybys → coefficients up to degree 5

▸ MoI∼0.341 → mildly differentiated

▸ J2/C22 = 3.19 < 10/3: mild deviation from hydrostatic equilibrium
▸ considerable excess flattening
→ the nonhydrostatic topography (> 500 m) must be compensated
▸ 2-layered models:
- if ρh∼1000 kg m−3: Rc∼2200 km, ρc∼2500 kg m3, dh∼400 km
- if ρh larger and/or MoI smaller: smaller and denser cores



Results of layered models: Titan
(Durante +, 2019) - 10 gravity flybys → coefficients up to degree 5

▸ MoI∼0.341 → mildly differentiated
▸ J2/C22 = 3.19 < 10/3: mild deviation from hydrostatic equilibrium

▸ considerable excess flattening
→ the nonhydrostatic topography (> 500 m) must be compensated
▸ 2-layered models:
- if ρh∼1000 kg m−3: Rc∼2200 km, ρc∼2500 kg m3, dh∼400 km
- if ρh larger and/or MoI smaller: smaller and denser cores



Results of layered models: Titan
(Durante +, 2019) - 10 gravity flybys → coefficients up to degree 5

▸ MoI∼0.341 → mildly differentiated
▸ J2/C22 = 3.19 < 10/3: mild deviation from hydrostatic equilibrium
▸ considerable excess flattening
→ the nonhydrostatic topography (> 500 m) must be compensated

▸ 2-layered models:
- if ρh∼1000 kg m−3: Rc∼2200 km, ρc∼2500 kg m3, dh∼400 km
- if ρh larger and/or MoI smaller: smaller and denser cores



Results of layered models: Titan
(Durante +, 2019) - 10 gravity flybys → coefficients up to degree 5

▸ MoI∼0.341 → mildly differentiated
▸ J2/C22 = 3.19 < 10/3: mild deviation from hydrostatic equilibrium
▸ considerable excess flattening
→ the nonhydrostatic topography (> 500 m) must be compensated
▸ 2-layered models:
- if ρh∼1000 kg m−3: Rc∼2200 km, ρc∼2500 kg m3, dh∼400 km
- if ρh larger and/or MoI smaller: smaller and denser cores



Interior models based on mass

and MoI

models taking into account the gravity field:
▸ Europa and Ganymede: iron cores, slightly thicker hydrospheres
▸ Enceladus and Titan: thinner hydrospheres → low core densities
- hydrated silicates
- porous material: Enceladus (Choblet +, 2017)
- organic material: Titan (Néri +, in rev.)
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Course overview

1. Motivation - why do we study icy moons.
History of exploration - telescope observations, spacecraft missions.
Surface characteristics - composition, age, and morphology.

2. Interior structure - layered models: from gravity, shape, composition.
Hydrosphere structure - H2O phase diagram, presence of oceans.
Preferred models for selected satellites.

3. Dynamics of the different planetary layers.
Thermal evolution - heat sources, heat transfer.
Melting/crystallization, anti-freezers.
Implications for the long-term stability of subsurface oceans.

4. Selected applications.
Overview of future missions.



Presence of deep ocean

▸ due to small density difference between ice and liquid water, presence
of the ocean cannot be inferred from the mass and gravity data

▸ other evidence for liquid water ocean:
- induced magnetic field
- auroral ovals oscillation
- Schumann resonance
- libration & obliquity
- tidal deformation
- heat flux
- surface activity
- ...



Induced magnetic field
(Khurana +, 2009)

▸ Faraday: time-varying mg. field accompanied by (time-var) el. field
▸ conductor in time-varying mg field: surface eddy currents induce
secondary field that reduces primary field in the conductor

▸ uniform primary field, dipolar induced field (same frequency)
▸ primary + induced field avoids the moon
▸ elmg induction: detection & characterisation of secondary field
→ information on location, size, shape, and conductivity
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Induced magnetic field
(Khurana +, 2009)

▸ Jupiter’s mg field: dipole tilted by ∼9.6○ → primary oscillating field
▸ additionally: day/night asymmetry in Jupiter’s magnetospheric field
▸ Saturn’s mg field: not inclined wrt rotation axis → moons do not
sense a systematic time-periodic field in their rest frame



Induced magnetic field
(Khurana +, 2009)

▸ skin depth: distance over which the primary signal decays to 1/e

S = (ωµ0σ/2)−1/2

▸ small: large material conductivity and/or high sounding frequency
▸ obstacle thickness >S : primary wave reflection → induced field

▸ Jupiter spin period ∼10 h:
- pure ice/water skin depth:
∼106 km ≫RE → no induction

- ocean water skin depth: ∼60 km
→ significant induction

▸ three-layered model can be
used to model the moon’s
induction response
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Induced magnetic field: Europa and Ganymede
(Khurana +, 1998; Kivelson +, 2000; Kivelson +, 2002; Schilling +, 2007)

Europa
▸ flybys with sufficiently low altitude required for an adequate
signal-to-noise ratio to decipher the induced field

▸ strong evidence that Europa has a subsurface liquid water ocean
▸ best fit of Galileo data: ocean thickness < 100 km (cannot rule out
thicker ocean)

Ganymede
▸ discovery of intrinsic magnetic (Kivelson+, 1996)
▸ satisfactory fits of Galileo data:

(a) internal field with dipole and quadrupole terms
(b) internal permanent dipole
+ induced magnetic dipole from ocean ∼150 km deep
▸ data did not allow to confirm the presence of an ocean
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Ganymede: auroral ovals oscillation
(Saur +, 2015)

▸ auroral emission first observed by HST (Hall +, 1998)
▸ shape: two circumpolar auroral ovals in N & S polar regions
▸ location: open-closed field line boundary - separates mg field lines
starting & ending on Ganymede from field lines connecting to Jupiter

▸ locations controlled by time-variable mg environment → oscillations
▸ ocean: primary field reduced by induced field → oscillation reduction
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▸ auroral emission first observed by HST (Hall +, 1998)
▸ shape: two circumpolar auroral ovals in N & S polar regions
▸ location: open-closed field line boundary - separates mg field lines
starting & ending on Ganymede from field lines connecting to Jupiter

▸ locations controlled by time-variable mg environment → oscillations
▸ ocean: primary field reduced by induced field → oscillation reduction

▸ HST observations: average
oscillation of 2.0○ ± 1.3○

▸ model:
- withouth ocean 5.8○ ± 1.3○

- with ocean 2.2○ ± 1.3○

▸ ocean depth ∼150–250 km



Evidence for ocean: Enceladus
1 geysers emanating from Enceladus’ south pole → existence of water

reservoir beneath the surface - regional sea/global ocean?



Evidence for ocean: Enceladus
1 geysers emanating from Enceladus’ south pole → existence of water

reservoir beneath the surface - regional sea/global ocean?
▸ synchronously rotating satellite on eccentric orbit:
- long axis points into empty focus: optical libration (Ψ)
→ periodic misalignement (long axis vs satellite-planet line)
→ gravitational torque → oscillations: physical longitudinal libration (γ)
▸ amplitude of γ depends on satellite’s interior structure

(credits: Hemingway +, 2018)



Evidence for ocean: Enceladus
1 geysers emanating from Enceladus’ south pole → existence of water

reservoir beneath the surface - regional sea/global ocean?
▸ Thomas + (2016):
- 488 points tracked through 340 images → γ = 0.120○ ± 0.014○

▸ too large for Enceladus’ core being rigidly connected to its surface
2 presence of a global ocean rather than a localized polar sea
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Evidence for ocean: Titan
(Béghin +, 2012)

1 Schumann resonance
▸ Earth:
- global elmg resonance with extremely low frequency (ELF, 3–60 Hz)
- in the cavity formed between the Earth’s surface and the ionosphere
- excited by lightning discharges
- modes: 7.83 Hz (fundamental), 14.3, 20.8, 27.3 and 33.8 Hz



Evidence for ocean: Titan
(Béghin +, 2012)

1 Schumann resonance
▸ Titan - descent of Huygens probe:
- observed ELF (36 Hz) wave: 2nd harmonic of Schumann resonance
- resonating cavity: between layered ionosphere (up to 150 km height)
and lower conductive surface beneath non-conductive ground

- excitation: ionospheric current sources
- lower reflector: water-ammonia ocean ∼55–80 km below icy crust



Evidence for ocean: Titan
(Iess +, 2012)

1 Schumann resonance (Béghin +, 2012)
2 tides
- eccentricity of Titan’s orbit (∼2.9%)
→ short-term time variation of quadrupole tidal forcing
→ change in Titan’s shape and gravity

- k2 (tidal) Love number: ratio of perturbed and perturbing potential
∼ mass redistribution inside the body in response to forcing potential
- incompressible body: k2 = 3/2, perfectly rigid body: k2 = 0

- 2 independent determinations from Cassini gravity data:
k2 = 0.589 ± 0.150, k2 = 0.637 ± 0.224

→ some global layer within Titan behaves like a fluid on orbital time
scales

(i) very low viscosity layer (an ocean) beneath an outer ice shell
(ii) low viscosity deep interior
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Evidence for ocean: Titan
(Baland +, 2011)

1 Schumann resonance (Béghin +, 2012)
2 tides (Iess +, 2012)
3 obliquity (axial tilt)
- angle between satellite’s rotational and orbital axis
(∼ angle between its equatorial and orbital plane)



Evidence for ocean: Titan
(Baland +, 2011)

1 Schumann resonance (Béghin +, 2012)
2 tides (Iess +, 2012)
3 obliquity (axial tilt)
- angle between satellite’s rotational and orbital axis
(∼ angle between its equatorial and orbital plane)

▸ Titan’s obliquity: ε∼0.3○
(Seidelmann +, 2007)

▸ models: (Baland +, 2011)
- completely solid Titan:
ε = 0.12○ ± 0.02○

- Titan with a liquid ocean:
ε = 0.32○ ± 0.02○

→ another indirect evidence for
Titan’s subsurface ocean



Structure of the hydrosphere - H2O phase diagram

▸ hydrosphere-rock boundary (HRB):
- Europa, Enceladus: ice I
- Ganymede, Titan: high-pressure (HP) ices

→ liquid water ocean sandwiched between two ice layers
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Updated interior structures

▸ Europa, Enceladus: ocean in direct contact with rock
→ great for origin of life ,
▸ Ganymede, Titan: high-pressure ice decouples ocean from the rock
→ not so great for origin of life /
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Adding more complexity
So far, we have assumed that:

▸ densities in particular layers are constant
▸ pure water/ice

In reality:

▸ density changes with mineralogy that depends on (P,T)
▸ salts (NaCl, MgSO4, ...) and/or ammonia in the subsurface oceans
→ reduction of melting temperature
→ change of liquid water buoyancy
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Preferred interior models for selected satellites



References
books:
Europa, eds. Pappalardo, McKinnon, Khurana, U. Arizona Press, 2009.

▸ Khurana et al., Electromagnetic induction from Europa’s ocean and
the deep interior, 571–588.

▸ Schubert et al., Interior of Europa, 353–367.

Enceladus and the Icy Moons of Saturn, eds. Schenk, Clark, Howett,
Verbiscer, Waite, U. Arizona Press, 2018.

▸ Hemingway et al., The interior of Enceladus, 57–78.

papers:
▸ Anderson et al. (1996), Nature, 384, 541–543.
▸ Anderson et al. (1998), Science, 281, 2019–2022.
▸ Baland et al. (2011), Astron. Astrophys., 530, 6.
▸ Béghin et al. (2012), Icarus, 218, 1028–1042.
▸ Choblet et al. (2017), Nature Astron, 1, 841–847.
▸ Durante et al. (2019), Icarus, 326, 123–132.



References
▸ Dziewonski & Anderson (1981), Phys. Earth Planet. Int., 25,
297–356.

▸ Hall et al. (1998), Astrophys. J., 499, 475–481.
▸ Hubbard & Anderson (1978), Icarus, 33, 336–341.
▸ Hussmann et al. (2015), in: Treatise on Geophysics, Elsevier,
605–635.

▸ Iess et al. (2012), Science, 337, 457–459.
▸ Iess et al. (2014), Science, 344, 78–80.
▸ Khurana et al. (1998), Nature, 395, 777–780.
▸ Kivelson et al. (1996), Nature, 384, 537–541.
▸ Kivelson et al. (2000), Science, 289, 1340–1343.
▸ Kivelson et al. (2002), Icarus, 157, 507–522.
▸ Néri et al., Earth Planet. Sci. Lett., under review.
▸ Saur et al. (2015), J. Geophys. Res., 120(3), 1715–1737.
▸ Schilling et al. (2007), Icarus, 192, 41–55.
▸ Seidelmann et al. (2007), Transactions of the IAU, Series A, 26, 181.
▸ Stein & Wysession (2003), Oxford: Blackwell (isbn 0865420785).
▸ Thomas et al. (2016), Icarus, 264, 37–47.
▸ Vance et al. (2018), J. Geophys. Res., 123, 180–205.


