Icy moons in the Solar System

Klára Kalousová klara.kalousova@mff.cuni.cz

Department of Geophysics, Faculty of Mathematics and Physics Charles University, Prague

Selected chapters on astrophysics (NAST021) October 22, 2019 room TAU, 14:50–16:20

Course overview

- Motivation why do we study icy moons. History of exploration - telescope observations, spacecraft missions. Surface characteristics - composition, age, and morphology.
- Interior structure layered models: from gravity, shape, composition. Hydrosphere structure - H₂O phase diagram, presence of oceans. Preferred models for selected satellites.
- Thermal evolution heat sources, heat transfer. Dynamics of the different planetary layers. Melting/crystallization, anti-freezers. Implications for the long-term stability of subsurface oceans.
- **4.** Selected applications. Overview of future missions.

Course overview

- Motivation why do we study icy moons. History of exploration - telescope observations, spacecraft missions. Surface characteristics - composition, age, and morphology.
- Interior structure layered models: from gravity, shape, composition. Hydrosphere structure - H₂O phase diagram, presence of oceans. Preferred models for selected satellites.
- Thermal evolution heat sources, heat transfer. Dynamics of the different planetary layers. Melting/crystallization, anti-freezers. Implications for the long-term stability of subsurface oceans.
- **4.** Selected applications. Overview of future missions.

Habitability requirements

- 1. material: C, H, N, O, P, S (~98% of bio molecules on Earth)
- 2. solvent to speed up reactions liquid water, ...?
- 3. energy source to sustain metabolism
- 4. stable environment

Habitability requirements

- 1. material: C, H, N, O, P, S (~98% of bio molecules on Earth)
- 2. solvent to speed up reactions liquid water, ...?
- 3. energy source to sustain metabolism
- 4. stable environment

Habitability requirements

- 1. material: C, H, N, O, P, S (~98% of bio molecules on Earth)
- 2. solvent to speed up reactions liquid water, ...?
- 3. energy source to sustain metabolism
- 4. stable environment
- $\rightarrow\,$ goal of heat transfer modeling is to characterize the thermal conditions within the moon on long time scales

- moons' thermal budget:
- $Q^{\scriptscriptstyle +}$ heat from internal sources their relative importance depends on:
 - time when they occur
 - how long they continue to supply heat

- moons' thermal budget:
- $Q^{\scriptscriptstyle +}$ heat from internal sources their relative importance depends on:
 - time when they occur
 - how long they continue to supply heat
 - heating of satellites starts with accretion

- moons' thermal budget:
- $Q^{\scriptscriptstyle +}$ heat from internal sources their relative importance depends on:
 - time when they occur
 - how long they continue to supply heat
 - heating of satellites starts with accretion
 - decay of radioactive isotopes:
 - short-lived (SLRI): ~10 Myr after accretion
 - long-lived (LLRI): heat over long-term

- moons' thermal budget:
- $Q^{\scriptscriptstyle +}$ heat from internal sources their relative importance depends on:
 - time when they occur
 - how long they continue to supply heat
 - heating of satellites starts with accretion
 - decay of radioactive isotopes:
 - short-lived (SLRI): ~10 Myr after accretion
 - long-lived (LLRI): heat over long-term
 - other transient events:
 - release of gravitational energy due to differentiation
 - despinning

- moons' thermal budget:
- $Q^{\scriptscriptstyle +}$ heat from internal sources their relative importance depends on:
 - time when they occur
 - how long they continue to supply heat
 - heating of satellites starts with accretion
 - decay of radioactive isotopes:
 - short-lived (SLRI): ~10 Myr after accretion
 - long-lived (LLRI): heat over long-term
 - other transient events:
 - release of gravitational energy due to differentiation
 - despinning
 - tidal dissipation associated with orbital evolution

- moons' thermal budget:
- $Q^{\scriptscriptstyle +}$ heat from internal sources their relative importance depends on:
 - time when they occur
 - how long they continue to supply heat
 - heating of satellites starts with accretion
 - decay of radioactive isotopes:
 - short-lived (SLRI): ~10 Myr after accretion
 - long-lived (LLRI): heat over long-term
 - other transient events:
 - release of gravitational energy due to differentiation
 - despinning
 - tidal dissipation associated with orbital evolution
 - Intent heating due to ocean crystallization

- moons' thermal budget:
- $Q^{\scriptscriptstyle +}$ heat from internal sources their relative importance depends on:
 - time when they occur
 - how long they continue to supply heat
 - heating of satellites starts with accretion
 - decay of radioactive isotopes:
 - short-lived (SLRI): ~10 Myr after accretion
 - long-lived (LLRI): heat over long-term
 - other transient events:
 - release of gravitational energy due to differentiation
 - despinning
 - tidal dissipation associated with orbital evolution
 - latent heating due to ocean crystallization
- $Q^-\,$ total heat lost through the moon's surface

- moons' thermal budget:
- $Q^{\scriptscriptstyle +}$ heat from internal sources their relative importance depends on:
 - time when they occur
 - how long they continue to supply heat
 - heating of satellites starts with accretion
 - decay of radioactive isotopes:
 - short-lived (SLRI): ~10 Myr after accretion
 - long-lived (LLRI): heat over long-term
 - other transient events:
 - release of gravitational energy due to differentiation
 - despinning
 - tidal dissipation associated with orbital evolution
 - Intent heating due to ocean crystallization
- Q^- total heat lost through the moon's surface
 - ▶ on long time scales: $Q^+ < Q^- \rightarrow$ moons are cooling
 - thermal evolution modeling characterisation of thermal conditions within the moons' interior

Accretion and differentiation heating (*Matson* +, 2009)

- mass falling within the gr
 - mass falling within the gravitational field
 - $\rightarrow\,$ potential energy changes to kinetic energy
 - $\rightarrow\,$ heat is dissipated

Accretion heating

- incoming material impacts satellite's surface
- heating occurs during satellite formation
- temperature profile after accretion (*Squyres* +, 1988):

$$T(r) = \frac{h}{c_{\rho}} \left(\frac{4\pi}{3} \rho G r^2 + \frac{\langle \nu \rangle^2}{2} \right) + T_i$$

- $h \in \langle 0, 1 \rangle$..fraction of mechanical energy turned into heat
- c_p..specific heat
- ρ ..ice-rock mixture density
- G..universal gravitational constant
- r..instantaneous radius
- $\langle \nu
 angle$..mean encounter velocity of planetesimal with growing satellite
- T_i temperature of the planetesimals

Accretion heating

- ▶ for *T_i*~75 K
- small-midsized satellites: $\Delta T \sim 20-100$ K
- large satellites: ΔT high enough for melting to occur

Differentiation heating

- shrinking and differentiation of a satellite releases gravitational energy in form of heat
- heat produced \sim difference in gravitational potential of mass distribution before and after
- small source compared to radioactivity and tides

Radiogenic heating

(Matson +, 2009; Robuchon +, 2010)

 ${\scriptstyle \bullet}\,$ radionuclides incorporated during accretion, amount \propto rock content

$$H_r = \rho x_s \sum_{i=1}^n C_0 H_{0,i} \exp(-\lambda_i t)$$

- x_s..silicates mass fraction
- C₀..initial concentration of radiogenic elements
- $H_{0,i}$...initial power produced by radiogenic decay per unit mass
- λ_i ...decay constant, $t_{1/2} = \frac{\ln 2}{\lambda}$...half-life, t...time since formation

Radiogenic heating

(Matson +, 2009; Robuchon +, 2010)

 ${\scriptstyle \bullet}\,$ radionuclides incorporated during accretion, amount \propto rock content

$$H_r = \rho x_s \sum_{i=1}^n C_0 H_{0,i} \exp(-\lambda_i t)$$

- x_s..silicates mass fraction
- C₀..initial concentration of radiogenic elements
- $H_{0,i}$...initial power produced by radiogenic decay per unit mass
- λ_i ...decay constant, $t_{1/2} = \frac{\ln 2}{\lambda}$...half-life, t...time since formation

	element	$t_{1/2}$	H ₀	C_0
		[Myr]	[W kg ⁻¹ of elements]	[ppb]
long-lived radioactive isotopes (LLRI)	²³⁸ U	4468	94.65×10 ⁻⁶	26.2
	²³⁵ U	703.81	568.7×10 ⁻⁶	8.2
	²³² Th	14030	26.38×10 ⁻⁶	53.8
	⁴⁰ K	1277	29.17×10^{-6}	1104
short-lived radioactive isotopes (SLRI)	²⁶ AI	0.716	0.341	600
	⁶⁰ Fe	1.5	0.071	200
	⁵³ Mg	3.7	0.027	25.7

Tidal force (*Sotin* +, 2009)

- gravitational force *F*_g from planet different at each point of the moon
- centrifugal force \vec{F}_c constant
- tidal force: $\vec{F}_t = \vec{F}_g \vec{F}_c$

Tidal force (*Sotin* +, 2009)

- gravitational force *F_g* from planet different at each point of the moon
- centrifugal force \vec{F}_c constant
- tidal force: $\vec{F}_t = \vec{F}_g \vec{F}_c$

- circular orbit (e = 0):
- every point in moon remains fixed wrt parent planet
- $\rightarrow\,$ static tides $\rightarrow\,$ relaxed long time ago into 3-axial hydrostatic shape

Tidal force (*Sotin* +, 2009)

- gravitational force *F*_g from planet different at each point of the moon
- centrifugal force \vec{F}_c constant
- tidal force: $\vec{F}_t = \vec{F}_g \vec{F}_c$

- circular orbit (e = 0):
- every point in moon remains fixed wrt parent planet
- $\rightarrow\,$ static tides $\rightarrow\,$ relaxed long time ago into 3-axial hydrostatic shape
 - ellipsoidal orbit (e > 0): most satellites
- \rightarrow orbital tides

Diurnal (orbital) tides

- (Sotin +, 2009)
 - $e > 0 \rightarrow$ fixed points in the moon move relative to parent planet:

Diurnal (orbital) tides

(Sotin +, 2009)

- $e > 0 \rightarrow$ fixed points in the moon move relative to parent planet:
- (i) distance between moon and planet changes with time
- $\rightarrow\,$ change in amplitude of planet's gravitational force on the moon
- \rightarrow radial tide (tidal bulge larger at pericenter than at apocenter)

Diurnal (orbital) tides

(Sotin +, 2009)

- $e > 0 \rightarrow$ fixed points in the moon move relative to parent planet:
- (i) distance between moon and planet changes with time
- $\rightarrow\,$ change in amplitude of planet's gravitational force on the moon
- \rightarrow radial tide (tidal bulge larger at pericenter than at apocenter)
- (ii) satellite at pericenter/apocenter orbits slightly faster/slower
- \rightarrow tidal force pattern rocks back and forth (east-west)
- \rightarrow librational tide

(e = 0, $\varepsilon \neq 0$: rocking back and forth in north-south direction)

 ${\scriptstyle \bullet}\,$ smaller displacement (by a factor of 1/e) than static tide

$$V_T(\vec{r}) = \frac{GM^*}{R^*} \sum_{j=2}^{\infty} \left(\frac{r}{R^*}\right)^j P_j(\cos\gamma)$$

- M^* mass of parent planet, R^* distance from parent planet
- P_j Legendre polynomial
- $\frac{\dot{r}}{R^*} \ll 1 \rightarrow \text{only } j = 2 \text{ term is kept}$

$$V_T(\vec{r}) \sim \frac{GM^*}{R^*} \left(\frac{r}{R^*}\right)^2 P_2(\cos\gamma)$$

- M^* mass of parent planet, R^* distance from parent planet
- P_j Legendre polynomial
- $\frac{r}{R^*} \ll 1 \rightarrow \text{only } j = 2 \text{ term is kept}$

$$V_T(\vec{r}) \sim \frac{GM^*}{R^*} \left(\frac{r}{R^*}\right)^2 P_2(\cos\gamma)$$

- M^* mass of parent planet, R^* distance from parent planet
- P_j Legendre polynomial
- $\frac{r}{R^*} \ll 1 \rightarrow \text{only } j = 2 \text{ term is kept}$
- γ angle between point on moon's surface: $\vec{r} = (r, \theta, \phi)$ and parent planet: $\vec{R}^* = (R^*, \theta', \phi')$ (varies in time)
- $\cos \gamma = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos(\phi \phi')$

$$V_T(\vec{r}) \sim \frac{GM^*}{R^*} \left(\frac{r}{R^*}\right)^2 P_2(\cos\gamma) \sim \frac{3GM^*R^2}{2a^3} \left(\frac{r}{R}\right)^2 [T_0 + T_1]$$

- M^* mass of parent planet, R^* distance from parent planet
- P_j Legendre polynomial
- $\frac{r}{R^*} \ll 1 \rightarrow \text{only } j = 2 \text{ term is kept}$
- γ angle between point on moon's surface: $\vec{r} = (r, \theta, \phi)$ and parent planet: $\vec{R}^* = (R^*, \theta', \phi')$ (varies in time)
- $\cos \gamma = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos(\phi \phi')$
- keeping only terms to first order in e:

$$T_{0} = \frac{1}{6} (1 - 3\cos^{2}\theta) + \frac{1}{2}\sin^{2}\theta\cos(2\phi)$$
$$T_{1} = \frac{e}{2} \bigg[\bigg((1 - 3\cos^{2}\theta) + 3\sin^{2}\theta\cos(2\phi) \bigg) \cos(nt) + 4\sin^{2}\theta\sin(2\phi)\sin(nt) \bigg]$$

a..semimajor axis, n..mean motion, R..moon radius, t..time wrt pericenter

- *T*₀: static tidal potential (time independent)
- T_1 : diurnal tidal potential (smaller than T_0 by e)
- ~ $\cos(nt)$: radial tide, $\sin(nt)$: librational tide

- (Sotin +, 2009)
 - periodic forcing:
 - different materials in the moons' interior deform differently
 - elastic + anelastic deformation \rightarrow time delay of response wrt forcing
 - $\sigma = \sigma_0 \exp[i\omega t] \rightarrow \varepsilon = \varepsilon_0 \exp[i(\omega t \delta)]$ (δ ..phase lag)

(Sotin +, 2009)

- periodic forcing:
- different materials in the moons' interior deform differently
- elastic + anelastic deformation \rightarrow time delay of response wrt forcing
- $\sigma = \sigma_0 \exp[i\omega t] \rightarrow \varepsilon = \varepsilon_0 \exp[i(\omega t \delta)] (\delta... \text{phase lag})$
- decrease of energy per cycle due to dissipation:

$$\Delta E_{diss} = \int_0^{2\pi/\omega} \sigma \frac{\partial \varepsilon}{\partial t} dt = \pi \sigma_0 \varepsilon_0 \sin(\delta)$$

(Sotin +, 2009)

- periodic forcing:
- different materials in the moons' interior deform differently
- elastic + anelastic deformation \rightarrow time delay of response wrt forcing
- $\sigma = \sigma_0 \exp[i\omega t] \rightarrow \varepsilon = \varepsilon_0 \exp[i(\omega t \delta)] (\delta... \text{phase lag})$
- decrease of energy per cycle due to dissipation:

$$\Delta E_{diss} = \int_0^{2\pi/\omega} \sigma \frac{\partial \varepsilon}{\partial t} dt = \pi \sigma_0 \varepsilon_0 \sin(\delta) = 2E\pi \sin(\delta)$$

• peak energy reached during one cycle: $E = \sigma_0 \varepsilon_0/2$

- (Sotin +, 2009)
 - periodic forcing:
 - different materials in the moons' interior deform differently
 - elastic + anelastic deformation \rightarrow time delay of response wrt forcing
 - $\sigma = \sigma_0 \exp[i\omega t] \rightarrow \varepsilon = \varepsilon_0 \exp[i(\omega t \delta)] (\delta... \text{phase lag})$
 - decrease of energy per cycle due to dissipation:

$$\Delta E_{diss} = \int_0^{2\pi/\omega} \sigma \frac{\partial \varepsilon}{\partial t} dt = \pi \sigma_0 \varepsilon_0 \sin(\delta) = 2E\pi \sin(\delta) \sim \frac{2\pi}{Q} E$$

- peak energy reached during one cycle: $E = \sigma_0 \varepsilon_0 / 2$
- Q quality factor (specific dissipation function): $Q = \frac{1}{\tan \delta}$

(Sotin +, 2009)

- periodic forcing:
- different materials in the moons' interior deform differently
- elastic + anelastic deformation \rightarrow time delay of response wrt forcing
- $\sigma = \sigma_0 \exp[i\omega t] \rightarrow \varepsilon = \varepsilon_0 \exp[i(\omega t \delta)] (\delta... \text{phase lag})$
- decrease of energy per cycle due to dissipation:

$$\Delta E_{diss} = \int_0^{2\pi/\omega} \sigma \frac{\partial \varepsilon}{\partial t} dt = \pi \sigma_0 \varepsilon_0 \sin(\delta) = 2E\pi \sin(\delta) \sim \frac{2\pi}{Q} E$$

- peak energy reached during one cycle: $E = \sigma_0 \varepsilon_0/2$
- Q quality factor (specific dissipation function): $Q = \frac{1}{\tan \delta}$
- average heating rate due to eccentricity tides:

$$\frac{dE}{dt} = \frac{21}{2} \frac{k_2}{Q} \frac{(nR)^5}{G} e^2$$

- orbital characteristics: n mean motion, e eccentricity
- interior structure char.: k_2 tidal Love number, Q quality factor

Distribution of heating

(Tobie, 2003; Tobie +, 2003; Sotin +, 2009)

- Europa:
- tidal heating in ice shell: $H_t^i \sim 10^{-6}$ W m⁻³
- radiogenic heating in silicates: $H_r^s \sim 10^{-8} \text{ W m}^{-3} \lesssim 100 \times H_t^i$
- tidal heating in silicates negligible wrt to H_r^s

(Tobie, 2003; Tobie +, 2003; Sotin +, 2009)

- Europa:
- tidal heating in ice shell: $H_t^i \sim 10^{-6}$ W m⁻³
- radiogenic heating in silicates: $H_r^s \sim 10^{-8}$ W m⁻³ $\leq 100 \times H_t^i$
- tidal heating in silicates negligible wrt to H_r^s
- · Io: tidal heating in silicates similar to radiogenic heating

- (Chen +, 2014)
 - tidal heating in the ocean?
 - eccentricity or obliquity tides

- (Chen +, 2014)
 - tidal heating in the ocean?
 - eccentricity or obliquity tides

- Europa:
- $H_t^i \sim 10^{-6} \text{ W m}^{-3}$
- $\rightarrow P_t^i \sim 10^{12} \text{ W}$
 - $H_r^s \sim 10^{-8} \text{ W m}^{-3}$
- $\rightarrow P_r^s \sim 10^{11} \text{ W}$
 - $P_e^o \sim 1.5 \times 10^7 \text{ W}$
 - $P_o^o \sim 3.1 \times 10^9 \text{ W}$

- (Chen +, 2014)
 - tidal heating in the ocean?
 - eccentricity or obliquity tides

- Europa:
- $H_t^i \sim 10^{-6} \text{ W m}^{-3}$
- $\rightarrow P_t^i{\sim}10^{12}~{\rm W}$
 - $H_r^s \sim 10^{-8} \text{ W m}^{-3}$
- $\rightarrow P_r^s \sim 10^{11} \text{ W}$
 - $P_e^o \sim 1.5 \times 10^7 \text{ W}$
 - $P_o^o \sim 3.1 \times 10^9 \text{ W}$
- → tidal dissipation in ocean likely not important wrt radiogenic & solid-body tidal heating

Heat sources - importance

(Chen +, 2014)

- relative contributions from different heating sources
- most satellites:
- ocean tidal heating likely not important wrt radiogenic / solid tides
- Triton: ocean tidal heating may play a role in its thermal budget

Heat sources - importance

(Chen +, 2014)

- relative contributions from different heating sources
- most satellites:
- ocean tidal heating likely not important wrt radiogenic / solid tides
- Triton: ocean tidal heating may play a role in its thermal budget
- Enceladus: strong tidal heating in the porous core (Choblet +, 2017)

Heat sources - importance

astronomy

LETTERS https://doi.org/10.1038/s41550-017-0289-8

Powering prolonged hydrothermal activity inside Enceladus

Gaël Choblet^{® 1*}, Gabriel Tobie¹, Christophe Sotin², Marie Běhounková^{® 3}, Ondřej Čadek³, Frank Postberg^{4,5} and Ondřej Souček⁶

(Sohl +, 1995; Hussmann & Spohn, 2004)

decrease in eccentricity due to dissipation:

$$\frac{de}{dt}\frac{e}{1-e^2} = \frac{-a}{GM^*M}\frac{dE}{dt}$$

 $\rightarrow\,$ dissipation would circularize the moons' orbits

(Sohl +, 1995; Hussmann & Spohn, 2004)

decrease in eccentricity due to dissipation:

$$\frac{de}{dt}\frac{e}{1-e^2} = \frac{-a}{GM^*M}\frac{dE}{dt}$$

 $\rightarrow\,$ dissipation would circularize the moons' orbits

- forced eccentricity due to resonances maintained over long periods:
- Laplace 1:2:4 resonance between Io, Europa, Ganymede
- Enceladus-Dione 2:1 resonance

(Sohl +, 1995; Hussmann & Spohn, 2004)

decrease in eccentricity due to dissipation:

$$\frac{de}{dt}\frac{e}{1-e^2} = \frac{-a}{GM^*M}\frac{dE}{dt}$$

 $\rightarrow\,$ dissipation would circularize the moons' orbits

- forced eccentricity due to resonances maintained over long periods:
- Laplace 1:2:4 resonance between Io, Europa, Ganymede
- Enceladus-Dione 2:1 resonance
- opposing effects of dissipation and resonance → oscillations

(Sohl +, 1995; Hussmann & Spohn, 2004)

decrease in eccentricity due to dissipation:

$$\frac{de}{dt}\frac{e}{1-e^2} = \frac{-a}{GM^*M}\frac{dE}{dt}$$

 $\rightarrow\,$ dissipation would circularize the moons' orbits

- forced eccentricity due to resonances maintained over long periods:
- Laplace 1:2:4 resonance between Io, Europa, Ganymede
- Enceladus-Dione 2:1 resonance
- opposing effects of dissipation and resonance → oscillations

• Titan: large eccentricity, no resonance \rightarrow tidal dissipation not likely

Amount of internal heat for different bodies

6371 km	1822 km	2575 km	1561 km	252.3 km			
5.97 10 ²⁴ kg	0.0894 10 ²⁴ kg	0.1345 10 ²⁴ kg	0.048 10 ²⁴ kg	0.000108 10 ²⁴ kg			
5525 kg/m³	3528 kg/m ³	1881 kg/m ³	2970 kg/m ³	1608 kg/m ³			
2/3 Silicates and 1/3 iron	Silicates	Ice and silicates	e and silicates Ice and silicates				
42 TW 82 mW/m ²	108 TW 2589 mW/m ²	750 GW 9 mW/m ²	→1 TW 33 mW/m²	20 GW 25 mW/m ²			
Radioactive power is proportional to the mass Other internal heat sources include tidal dissipation, cooling, and latent heat							

- conduction: heat transfer via direct molecular collision
- $P = A k \nabla T$ (*P*..power, *A*..area, *k*..thermal conductivity, *T*..temp.)

- conduction: heat transfer via direct molecular collision
- $P = A k \nabla T$ (*P*..power, *A*..area, *k*..thermal conductivity, *T*..temp.)
- convection: heat transfer due to molecular expansion

- conduction: heat transfer via direct molecular collision
- $P = A k \nabla T$ (*P*..power, *A*..area, *k*..thermal conductivity, *T*..temp.)
- convection: heat transfer due to molecular expansion
- warm air expands & rises \rightarrow cooler air sinks & becomes heated
- → convection current

- conduction: heat transfer via direct molecular collision
- $P = A k \nabla T$ (*P*..power, *A*..area, *k*..thermal conductivity, *T*..temp.)
- convection: heat transfer due to molecular expansion
- warm air expands & rises \rightarrow cooler air sinks & becomes heated
- → convection current
 - radiation: heat transfer due to emission of elmg. waves
 - Stefan-Boltzmann law: $P = A\varepsilon\sigma T^4$ (ε ..emissivity, σ ..S-B const.)

Thermal convection - examples

air currents

Thermal convection - examples

air currents

flow in Earth's mantle → plate tectonics

$$\rho \frac{d\mathbf{v}}{dt} = \nabla \cdot \tau + \mathbf{f}$$

- ρ ..density, **v**..velocity
- au..Cauchy stress tensor
- **f**..volume force

$$\rho \frac{d\mathbf{v}}{dt} = \nabla \cdot \tau + \mathbf{f}$$
$$\rho \frac{d\mathbf{v}}{dt} = -\nabla p + \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}$$

- ρ ..density, **v**..velocity
- τ ..Cauchy stress tensor: $\tau = -pI + \sigma$: *p*..pressure, σ ..deviatoric stress
- **f**..volume force

$$\rho \frac{d\mathbf{v}}{dt} = \nabla \cdot \tau + \mathbf{f}$$
$$\rho \frac{d\mathbf{v}}{dt} = -\nabla \mathbf{p} + \nabla \cdot \mathbf{\sigma} + \mathbf{f}$$
$$\rho \frac{d\mathbf{v}}{dt} = -\nabla \mathbf{p} + \nabla \cdot \mathbf{\sigma} + \rho \mathbf{g}$$

- $\rho..{\rm density},~{\pmb v}..{\rm velocity}$
- τ ..Cauchy stress tensor: $\tau = -pI + \sigma$: *p*..pressure, σ ..deviatoric stress
- \boldsymbol{f} ..volume force: gravity: $\boldsymbol{f} = \rho \boldsymbol{g}$

$$\rho \frac{d\mathbf{v}}{dt} = \nabla \cdot \tau + \mathbf{f}$$
$$\rho \frac{d\mathbf{v}}{dt} = -\nabla p + \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}$$
$$\rho \frac{d\mathbf{v}}{dt} = -\nabla p + \nabla \cdot \boldsymbol{\sigma} + \rho \mathbf{g}$$
$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla p + \nabla \cdot \boldsymbol{\sigma} + \rho \mathbf{g}$$

- $\rho..{\rm density},\ \textbf{\textit{v}}..{\rm velocity}$
- τ ..Cauchy stress tensor: $\tau = -pI + \sigma$: *p*..pressure, σ ..deviatoric stress
- \boldsymbol{f} ..volume force: gravity: $\boldsymbol{f} = \rho \boldsymbol{g}$
- time derivative in a moving continuum: $\frac{d\mathbf{v}}{dt} = \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}$

Navier-Stokes equations

$$\rho \frac{d\mathbf{v}}{dt} = \nabla \cdot \tau + \mathbf{f}$$

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla \rho + \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}$$

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla \rho + \nabla \cdot \boldsymbol{\sigma} + \rho \mathbf{g}$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla \rho + \nabla \cdot \boldsymbol{\sigma} + \rho \mathbf{g}$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla \rho + \nabla \cdot [\eta (\nabla \mathbf{v} + \nabla \mathbf{v}^{\mathrm{T}})] + \rho \mathbf{g}, \quad \nabla \cdot \mathbf{v} = 0$$

- $\rho..{\sf density},\ \textbf{\textit{v}}..{\sf velocity}$
- τ ..Cauchy stress tensor: $\tau = -pI + \sigma$: *p*..pressure, σ ..deviatoric stress
- \boldsymbol{f} ..volume force: gravity: $\boldsymbol{f} = \rho \boldsymbol{g}$
- time derivative in a moving continuum: $\frac{d\mathbf{V}}{dt} = \frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V}$
- incompressible viscous fluid: $\nabla \cdot \boldsymbol{v} = 0$, $\boldsymbol{\sigma} = \eta (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^{T})$: η ..viscosity

Heat transfer equation

$$\rho c_{\rm p} \left(\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T \right) = -\nabla \cdot \boldsymbol{q} + H$$

- cp...heat capacity at constant pressure
- T..temperature
- **q**..heat flux
- H volumetric heat sources

Heat transfer equation

$$\rho c_{\rm p} \left(\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T \right) = -\nabla \cdot \boldsymbol{q} + H$$

$$\rho c_{\rm p} \left(\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + H$$

- cp...heat capacity at constant pressure
- T..temperature
- \boldsymbol{q} ..heat flux: Fourier law: $\boldsymbol{q} = -k \nabla T$
- H volumetric heat sources

$$\nabla \cdot \boldsymbol{v} = 0$$

$$\rho \left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} \right) = -\nabla p + \nabla \cdot \left[\eta (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^{\mathrm{T}}) \right] + \rho \boldsymbol{g}$$

$$\rho c_{\mathrm{p}} \left(\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + H$$

• Equation of State (EoS): $\rho = \rho(P, T) = \rho_0(P)(1-\alpha(T-T_0)) \sim \rho_0(1-\alpha(T-T_0))$

→ buoyancy source

$$\nabla \cdot \boldsymbol{v} = 0$$

$$\rho \left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} \right) = -\nabla p + \nabla \cdot \left[\eta (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^{\mathrm{T}}) \right] + \rho \boldsymbol{g}$$

$$\rho c_{\mathrm{p}} \left(\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + H$$

• Equation of State (EoS): $\rho = \rho(P, T) = \rho_0(P)(1-\alpha(T-T_0)) \sim \rho_0(1-\alpha(T-T_0))$

 \rightarrow buoyancy source

$$\nabla \cdot \boldsymbol{v} = 0$$

$$\rho \left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} \right) = -\nabla \rho + \nabla \cdot \left[\eta (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^{\mathrm{T}}) \right] + \rho_0 (1 - \alpha (T - T_0)) \boldsymbol{g}$$

$$\rho c_{\mathrm{p}} \left(\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + H$$

- Equation of State (EoS): $\rho = \rho(P, T) = \rho_0(P)(1-\alpha(T-T_0)) \sim \rho_0(1-\alpha(T-T_0))$
- \rightarrow buoyancy source
 - pressure splitting: $p = P_0 + \pi$ (hydrostatic, dynamic pressure)

$$\nabla \cdot \mathbf{v} = 0$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \nabla \cdot \left[\eta (\nabla \mathbf{v} + \nabla \mathbf{v}^{\mathrm{T}}) \right] + \rho_0 (1 - \alpha (T - T_0)) \mathbf{g}$$

$$\rho c_{\mathrm{p}} \left(\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + H$$

- Equation of State (EoS): $\rho = \rho(P, T) = \rho_0(P)(1-\alpha(T-T_0)) \sim \rho_0(1-\alpha(T-T_0))$
- \rightarrow buoyancy source
 - pressure splitting: $p = P_0 + \pi$ (hydrostatic, dynamic pressure)

$$\nabla \cdot \boldsymbol{v} = 0$$

$$\rho \left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} \right) = -\nabla (P_0 + \pi) + \nabla \cdot \left[\eta (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^{\mathrm{T}}) \right] + \rho_0 (1 - \alpha (T - T_0)) \boldsymbol{g}$$

$$\rho c_{\mathrm{p}} \left(\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + H$$

- Equation of State (EoS): $\rho = \rho(P, T) = \rho_0(P)(1-\alpha(T-T_0)) \sim \rho_0(1-\alpha(T-T_0))$
- \rightarrow buoyancy source
 - pressure splitting: $p = P_0 + \pi$ (hydrostatic, dynamic pressure)
 - hydrostatic pressure: $\nabla P_0 = \rho_0 \boldsymbol{g}$

$$\nabla \cdot \boldsymbol{v} = 0$$

$$\rho \left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} \right) = -\nabla (P_0 + \pi) + \nabla \cdot \left[\eta (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^{\mathrm{T}}) \right] + \rho_0 (1 - \alpha (T - T_0)) \boldsymbol{g}$$

$$\rho c_{\mathrm{p}} \left(\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + H$$

- Equation of State (EoS): $\rho = \rho(P, T) = \rho_0(P)(1-\alpha(T-T_0)) \sim \rho_0(1-\alpha(T-T_0))$
- \rightarrow buoyancy source
 - pressure splitting: $p = P_0 + \pi$ (hydrostatic, dynamic pressure)
 - hydrostatic pressure: $\nabla P_0 = \rho_0 \boldsymbol{g}$

$$\nabla \cdot \boldsymbol{v} = 0$$

$$\rho \left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} \right) = -\nabla \pi + \nabla \cdot \left[\eta (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^{\mathrm{T}}) \right] - \rho_0 \alpha (T - T_0) \boldsymbol{g}$$

$$\rho c_{\mathrm{p}} \left(\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + H$$

scales:

$$\boldsymbol{r} = \boldsymbol{D}\boldsymbol{r}', \quad \boldsymbol{t} = \frac{D^2}{\kappa}\boldsymbol{t}', \quad \boldsymbol{v} = \frac{\kappa}{D}\boldsymbol{v}', \quad \boldsymbol{\pi} = \frac{\eta_0\kappa}{D^2}\boldsymbol{\pi}', \quad \boldsymbol{\eta} = \eta_0\boldsymbol{\eta}',$$
$$\boldsymbol{T} = \boldsymbol{T}_{\rm s} + \Delta \boldsymbol{T}\boldsymbol{T}', \quad \boldsymbol{k} = k_0\boldsymbol{k}', \quad \boldsymbol{H} = \frac{\boldsymbol{k}\Delta\boldsymbol{T}}{D^2}\boldsymbol{H}'$$

- D..characteristic domain dimension
- $\kappa = \frac{k_0}{\rho_0 c_p}$..thermal diffusivity
- η_0 ..reference viscosity
- k₀..reference thermal conductivity
- $\Delta T = T_{\rm b} T_{\rm s}$..temperature contrast across domain (**b**ottom, **s**urface)

$$\nabla \cdot \boldsymbol{v} = 0$$

$$Pr^{-1} \left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} \right) = -\nabla \pi + \nabla \cdot \left[\eta (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^{T}) \right] + Ra(T - T_{0})\boldsymbol{e}_{r}$$

$$\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T = \nabla \cdot (k \nabla T) + H$$

$$\nabla \cdot \mathbf{v} = 0$$

$$Pr^{-1} \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla \pi + \nabla \cdot \left[\eta (\nabla \mathbf{v} + \nabla \mathbf{v}^T) \right] + Ra(T - T_0) \mathbf{e}_{\mathrm{r}}$$

$$\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \nabla \cdot (k \nabla T) + H$$

• Prandtl number: momentum vs. thermal diffusivity

$$Pr = \frac{\eta_0}{\rho_0 \kappa}$$

$$\nabla \cdot \mathbf{v} = 0$$

$$Pr^{-1} \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla \pi + \nabla \cdot \left[\eta (\nabla \mathbf{v} + \nabla \mathbf{v}^T) \right] + Ra(T - T_0) \mathbf{e}_r$$

$$\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \nabla \cdot (k \nabla T) + H$$

• Prandtl number: momentum vs. thermal diffusivity

$$Pr = \frac{\eta_0}{\rho_0 \kappa}$$

material	η_0 [Pa s]	$ ho_0$ [kg m ⁻³]	$\stackrel{\kappa}{\mathrm{m^2 s^{-1}}}$	Pr	Pr^{-1}
silicates	$10^{18} - 10^{20}$	3500	10^{-6}	$10^{20} - 10^{22}$	×
$$\nabla \cdot \mathbf{v} = 0$$

$$Pr^{-1} \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla \pi + \nabla \cdot \left[\eta (\nabla \mathbf{v} + \nabla \mathbf{v}^T) \right] + Ra(T - T_0) \mathbf{e}_r$$

$$\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \nabla \cdot (k \nabla T) + H$$

• Prandtl number: momentum vs. thermal diffusivity

$$Pr = \frac{\eta_0}{\rho_0 \kappa}$$

material	η_0 [Pa s]	$ ho_0$ [kg m ⁻³]	$\stackrel{\kappa}{\mathrm{m}^{2}\mathrm{s}^{-1}}$	Pr	Pr^{-1}
silicates	$10^{18} - 10^{20}$	3500	10^{-6}	$10^{20} - 10^{22}$	×
water	10 ⁻³	1000	10^{-7}	10	\checkmark

$$\nabla \cdot \mathbf{v} = 0$$

$$Pr^{-1} \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla \pi + \nabla \cdot \left[\eta (\nabla \mathbf{v} + \nabla \mathbf{v}^T) \right] + Ra(T - T_0) \mathbf{e}_r$$

$$\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \nabla \cdot (k \nabla T) + H$$

• Prandtl number: momentum vs. thermal diffusivity

$$Pr = \frac{\eta_0}{\rho_0 \kappa}$$

material	η_0 [Pa s]	$ ho_0$ [kg m ⁻³]	$^\kappa_{ m m^2~s^{-1}}$	Pr	Pr^{-1}
silicates	$10^{18} - 10^{20}$	3500	10^{-6}	$10^{20} - 10^{22}$	×
water	10^{-3}	1000	10^{-7}	10	\checkmark
ice	$10^{14} - 10^{16}$	1000	10^{-6}	$10^{17} - 10^{19}$	×

$$\nabla \cdot \boldsymbol{v} = 0$$

$$Pr^{-1} \left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} \right) = -\nabla \pi + \nabla \cdot \left[\eta (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^T) \right] + Ra(T - T_0) \boldsymbol{e}_{\mathrm{r}}$$

$$\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T = \nabla \cdot (k \nabla T) + H$$

$$Ra = \frac{D^2/\kappa}{\eta_0/\Delta\rho Dg} = \frac{\rho_0 \alpha g \Delta T D^3}{\eta_0 \kappa}$$

$$\nabla \cdot \boldsymbol{v} = 0$$

$$Pr^{-1} \left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} \right) = -\nabla \pi + \nabla \cdot \left[\eta (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^T) \right] + Ra(T - T_0) \boldsymbol{e}_{\mathrm{r}}$$

$$\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T = \nabla \cdot (k \nabla T) + H$$

 Rayleigh number: time scale for diffusive thermal transport vs. time scale for convective thermal transport

$$Ra = \frac{D^2/\kappa}{\eta_0/\Delta\rho Dg} = \frac{\rho_0 \alpha g \Delta T D^3}{\eta_0 \kappa}$$

• critical value: $Ra_c \sim 10^3$

$$\nabla \cdot \boldsymbol{v} = 0$$

$$Pr^{-1} \left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} \right) = -\nabla \pi + \nabla \cdot \left[\eta (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^T) \right] + Ra(T - T_0) \boldsymbol{e}_{\mathrm{r}}$$

$$\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T = \nabla \cdot (k \nabla T) + H$$

 Rayleigh number: time scale for diffusive thermal transport vs. time scale for convective thermal transport

$$Ra = \frac{D^2/\kappa}{\eta_0/\Delta\rho Dg} = \frac{\rho_0 \alpha g \Delta T D^3}{\eta_0 \kappa}$$

• critical value: $Ra_c \sim 10^3$

Ra	$\lesssim 10^3$	$\lesssim 10^4$	$\lesssim 10^5$	> 10 ⁵
regime	conduction	steady-state	periodic	chaotic
regime	conduction	convection	convection	convection

$$\nabla \cdot \boldsymbol{v} = 0$$

$$Pr^{-1} \left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} \right) = -\nabla \pi + \nabla \cdot \left[\eta (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^T) \right] + Ra(T - T_0) \boldsymbol{e}_{\mathrm{r}}$$

$$\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T = \nabla \cdot (k \nabla T) + H$$

$$Ra = \frac{D^2/\kappa}{\eta_0/\Delta\rho Dg} = \frac{\rho_0 \alpha g \Delta T D^3}{\eta_0 \kappa}$$

material
$$\begin{pmatrix} \alpha & g & D & \Delta T & Ra & \text{convection?}\\ [1/K] & [m/s^2] & [m] & [K] \\ \hline \text{silicates} & 3 \times 10^{-5} & 1 & 10^5 - 10^6 & 10^3 & 10^3 - 10^8 & \texttt{x}/\texttt{x} \end{pmatrix}$$

$$\nabla \cdot \boldsymbol{v} = 0$$

$$Pr^{-1} \left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} \right) = -\nabla \pi + \nabla \cdot \left[\eta (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^T) \right] + Ra(T - T_0) \boldsymbol{e}_{\mathrm{r}}$$

$$\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T = \nabla \cdot (k \nabla T) + H$$

$$Ra = \frac{D^2/\kappa}{\eta_0/\Delta\rho Dg} = \frac{\rho_0 \alpha g \Delta T D^3}{\eta_0 \kappa}$$
material
$$\begin{bmatrix} \alpha & g & D & \Delta T & Ra & \text{convection?} \\ [1/K] & [m/s^2] & [m] & [K] & & \\ \hline \text{silicates} & 3 \times 10^{-5} & 1 & 10^5 - 10^6 & 10^3 & 10^3 - 10^8 & \times/\checkmark \\ \text{water} & 10^{-4} & 1 & 10^4 - 10^5 & 10^{-3} - 10^{-2} & 10^{18} - 10^{22} & \checkmark & & \\ \end{bmatrix}$$

$$\nabla \cdot \boldsymbol{v} = 0$$

$$Pr^{-1} \left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} \right) = -\nabla \pi + \nabla \cdot \left[\eta (\nabla \boldsymbol{v} + \nabla \boldsymbol{v}^T) \right] + Ra(T - T_0) \boldsymbol{e}_{\mathrm{r}}$$

$$\frac{\partial T}{\partial t} + \boldsymbol{v} \cdot \nabla T = \nabla \cdot (k \nabla T) + H$$

$$\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \nabla \cdot (k \nabla T) + H$$

- $\mathbf{v} \rightarrow 0$: heat transferred only by conduction (heat diffusion)
- $\mathbf{v} \neq 0$: heat transferred by conduction & advection \rightarrow convection
- Nusselt number = convective vs conductive heat transfer
- measure of heat transfer efficiency
- Nu = 1: conduction
- Nu > 1: convection

H~4.1 km, Ra~0.203E+02, Nu~1.00 q [W m⁻²] 0.15 qt qb 0.00 2 3 0 4 х 0.15 E 0.10 N 0.00 0 2 3 0.0 0.1 0 q [W m⁻²] x 1 250 도²⁰⁰ ⊢ 150 Ν 100 0 0 2 3 100 200 1 4 T [K] х

Material parameters

viscosity - strongly depends on temperature as

$$\eta \propto \exp\left(\frac{A}{RT}\right)$$

- cold temperatures @ surface
- \rightarrow high viscosity \rightarrow no flow \rightarrow 'stagnant lid'

Material parameters

• thermal conductivity - function of temperature: $k \propto \frac{1}{T}$

- numerical models results strongly depend on model parameters:
- material (viscosity, conductivity, ...)
- internal structure (thickness of different layers)

- numerical models results strongly depend on model parameters:
- material (viscosity, conductivity, ...)
- internal structure (thickness of different layers)
- many parameters evolve in time (structure, temperature, ...)

- numerical models results strongly depend on model parameters:
- material (viscosity, conductivity, ...)
- internal structure (thickness of different layers)
- many parameters evolve in time (structure, temperature, ...)

thermal evolution models:

layers of different material

- numerical models results strongly depend on model parameters:
- material (viscosity, conductivity, ...)
- internal structure (thickness of different layers)
- many parameters evolve in time (structure, temperature, ...)

thermal evolution models:

- layers of different material
- parametrized heat transfer:
- $Nu \propto \alpha_1 Ra^{\beta_1}$, $\delta \propto \alpha_2 \gamma Ra^{\beta_2}$, ...

- numerical models results strongly depend on model parameters:
- material (viscosity, conductivity, ...)
- internal structure (thickness of different layers)
- many parameters evolve in time (structure, temperature, ...)

thermal evolution models:

- layers of different material
- parametrized heat transfer:
- $Nu \propto \alpha_1 Ra^{\beta_1}$, $\delta \propto \alpha_2 \gamma Ra^{\beta_2}$, ...
- different heat sources in each layer
- T continuous through interfaces

- numerical models results strongly depend on model parameters:
- material (viscosity, conductivity, ...)
- internal structure (thickness of different layers)
- many parameters evolve in time (structure, temperature, ...)

thermal evolution models:

- layers of different material
- parametrized heat transfer:
- $Nu \propto \alpha_1 Ra^{\beta_1}$, $\delta \propto \alpha_2 \gamma Ra^{\beta_2}$, ...
- different heat sources in each layer
- T continuous through interfaces
- jumps in q at phase change boundaries:

Stefan problem (melting/crystallization)

$$\boldsymbol{n} \cdot (\boldsymbol{q}_i - \boldsymbol{q}_w) = \Delta q_n = L \rho_i \frac{d\xi}{dt}$$

L..latent heat, $\xi(t)$..phase interface

a) Heat flux variations

Effect of antifreezers

 \blacktriangleright NaCl, MgSO₄, NH₃ \rightarrow significant reduction of melting temperature

- ocean freezing rate from Stefan condition: $\Gamma = \frac{\Delta\xi}{\Delta t} = \frac{\Delta q}{L_a}$
- e.g. $\Delta q \sim 1 \text{ mW m}^{-2} \rightarrow \Gamma \sim 100 \text{ km Gyr}^{-1}$
 - cf. diffusion timescale $D^2/\kappa \sim 0.3$ Gyr
 - $\rightarrow\,$ oceans beneath thick conductive crusts: lifetimes $\sim\,$ Solar System age

- ocean freezing rate from Stefan condition: $\Gamma = \frac{\Delta\xi}{\Delta t} = \frac{\Delta q}{L_a}$
- e.g. $\Delta q \sim 1 \text{ mW m}^{-2} \rightarrow \Gamma \sim 100 \text{ km Gyr}^{-1}$
 - cf. diffusion timescale $D^2/\kappa \sim 0.3$ Gyr
 - $\rightarrow\,$ oceans beneath thick conductive crusts: lifetimes $\sim\,$ Solar System age

antifreezers:

- ammonia freezing point depression of several tens of K
- direct detection @ Enceladus, maybe Titan; absent in Jovian moons
- salts (NaCl, MgSO₄) smaller freezing point depressions

- ocean freezing rate from Stefan condition: $\Gamma = \frac{\Delta\xi}{\Delta t} = \frac{\Delta q}{L_a}$
- e.g. $\Delta q \sim 1 \text{ mW m}^{-2} \rightarrow \Gamma \sim 100 \text{ km Gyr}^{-1}$
 - cf. diffusion timescale $D^2/\kappa \sim 0.3$ Gyr
 - $\rightarrow\,$ oceans beneath thick conductive crusts: lifetimes $\sim\,$ Solar System age

antifreezers:

- ${\scriptstyle \bullet}\,$ ammonia freezing point depression of several tens of K
- direct detection @ Enceladus, maybe Titan; absent in Jovian moons
- salts (NaCl, MgSO₄) smaller freezing point depressions

heat sources:

- accretion heat: modest even for largest moons
- radioactive decay (mainly K, U and Th)
- large cores (D>10³ km): D^2/κ ~32 Gyr! \rightarrow long-term energy reservoir
- tidal heating: more likely for inner satellites, mainly in ice layers
- reduces eccentricity \rightarrow heating rate; eccentricity may be excited by resonance (Io-Europa-Ganymede, Enceladus-Dione)

- ocean freezing rate from Stefan condition: $\Gamma = \frac{\Delta \xi}{\Delta t} = \frac{\Delta q}{L_0}$
- e.g. $\Delta q \sim 1 \text{ mW m}^{-2} \rightarrow \Gamma \sim 100 \text{ km Gyr}^{-1}$
 - cf. diffusion timescale D^2/κ ~0.3 Gyr
 - $\rightarrow\,$ oceans beneath thick conductive crusts: lifetimes $\sim\,$ Solar System age

antifreezers:

- ${\scriptstyle \bullet}\,$ ammonia freezing point depression of several tens of K
- direct detection @ Enceladus, maybe Titan; absent in Jovian moons
- ▶ salts (NaCl, MgSO₄) smaller freezing point depressions

heat sources:

- accretion heat: modest even for largest moons
- radioactive decay (mainly K, U and Th)
- large cores (D>10³ km): D^2/κ ~32 Gyr! \rightarrow long-term energy reservoir
- tidal heating: more likely for inner satellites, mainly in ice layers
- reduces eccentricity → heating rate; eccentricity may be excited by resonance (Io-Europa-Ganymede, Enceladus-Dione)

heat transfer:

- convection (thick, mobile crusts) vs conduction (thin, rigid crusts)
- $\rightarrow\,$ more information/data on the interior structure are needed

References

Saturn from Cassini-Huygens, eds. Dougherty, Esposito, Krimigis Springer, 2009.

 Matson et al., The thermal evoluation and internal structure of Saturn's mid-sized icy satellites, 577–612.

Europa, eds. Pappalardo, McKinnon, Khurana, U. Arizona Press, 2009.

Sotin et al., Tides and tidal heating on Europa, 85–117.

papers:

- ▶ Chen et al. (2014), *Icarus*, **229**, 11–30.
- ▶ Choblet et al. (2017), Nature Astron, 1, 841–847.
- Choukroun & Grasset (2010), J. Chem. Phys., 133, 144502.
- Hussmann & Spohn (2004), Icarus, 171, 391-410.
- Jornaux et al. (2013), *Icarus*, **226**, 355–363.
- Kvorka et al. (2018), *Icarus*, **310**, 149–164.
- Mitrovica & Jarvis (1987), Geophys. Astrophys. Fluid Dyn., 38, 193–223.
- Nimmo & Pappalardo (2016), J. Geophys. Res., 121, 1378-1399.
- Noack et al. (2016), Icarus, 277, 215–236.
- ▶ Robuchon et al. (2010), Icarus, 207, 959–97.
- Sohl et al. (1995), *Icarus*, 115, 278–294.
- Tobie (2003), PhD thesis.
- Tobie et al. (2003), J. Geophys. Res., 108, 5124.
- Tobie et al. (2006), *Nature*, **440**, 61–64.
- ▶ Tosi et al. (2015), Geochem. Geophys. Geosyst., 16, 2175-2196.
- Vance et al. (2014), Planet. Space Sci., 96, 62-70.