Icy moons in the Solar System

Klára Kalousová klara.kalousova@mff.cuni.cz

Department of Geophysics, Faculty of Mathematics and Physics Charles University, Prague

Selected chapters on astrophysics (NAST021) October 29, 2019 room TAU, 14:50–16:20

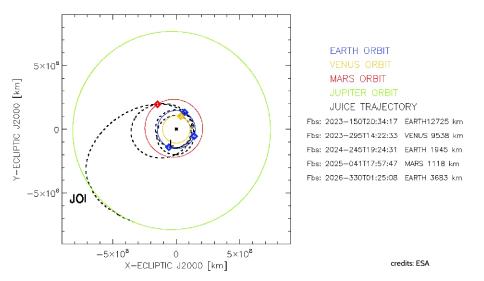
Course overview

- Motivation why do we study icy moons. History of exploration - telescope observations, spacecraft missions. Surface characteristics - composition, age, and morphology.
- Interior structure layered models: from gravity, shape, composition. Hydrosphere structure - H₂O phase diagram, presence of oceans. Preferred models for selected satellites.
- Thermal evolution heat sources, heat transfer. Dynamics of the different planetary layers. Melting/crystallization, anti-freezers. Implications for the long-term stability of subsurface oceans.
- **4.** Overview of future missions. Selected applications.

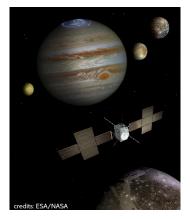
Course overview

- Motivation why do we study icy moons. History of exploration - telescope observations, spacecraft missions. Surface characteristics - composition, age, and morphology.
- Interior structure layered models: from gravity, shape, composition. Hydrosphere structure - H₂O phase diagram, presence of oceans. Preferred models for selected satellites.
- Thermal evolution heat sources, heat transfer. Dynamics of the different planetary layers. Melting/crystallization, anti-freezers. Implications for the long-term stability of subsurface oceans.
- 4. Overview of future missions.

Selected applications.

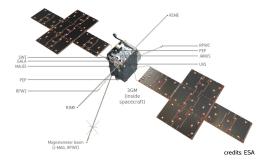

first large-class ESA mission

2022 planned launch ~7.6 yr cruise phase EVEME gravity assist


first large-class ESA mission

- cruise phase

first large-class ESA mission


2022 planned launch ~7.6 yr cruise phase EVEME gravity assist 2030 Jupiter Orbit Insertion ~2.5 yr Jupiter tour ~8 m Ganymede tour



spacecraft & science payload

~60–75 m² solar arrays (solar constant ~46 W m⁻² vs. 1360 W m⁻² @ Earth) 1h46m signal roundtrip, 3m high-gain antenna, 1.4 Gb daily downlink

- ~60–75 m² solar arrays (solar constant ~46 W m⁻² vs. 1360 W m⁻² @ Earth) 1h46m signal roundtrip, 3m high-gain antenna, 1.4 Gb daily downlink
- remote sensing:
- optical cameras (JANUS)
- spectrometers (UVS, MAJIS, SWI)


- ~60–75 m² solar arrays (solar constant ~46 W m⁻² vs. 1360 W m⁻² @ Earth) 1h46m signal roundtrip, 3m high-gain antenna, 1.4 Gb daily downlink
- remote sensing:
- optical cameras (JANUS)
- spectrometers (UVS, MAJIS, SWI)
- geophysical:
- laser altimeter (GALA)
- radar sounder (RIME)
- radio science package (3GM)

- ~60–75 m² solar arrays (solar constant ~46 W m⁻² vs. 1360 W m⁻² @ Earth) 1h46m signal roundtrip, 3m high-gain antenna, 1.4 Gb daily downlink
- remote sensing:
- optical cameras (JANUS)
- spectrometers (UVS, MAJIS, SWI)
- geophysical:
- laser altimeter (GALA)
- radar sounder (RIME)
- radio science package (3GM)
- in situ:
- plasma+radio sensors (PEP, RPWI)
- magnetometer (J-MAG)

- ~60–75 m² solar arrays (solar constant ~46 W m⁻² vs. 1360 W m⁻² @ Earth) 1h46m signal roundtrip, 3m high-gain antenna, 1.4 Gb daily downlink
- remote sensing:
- optical cameras (JANUS)
- spectrometers (UVS, MAJIS, SWI)
- geophysical:
- laser altimeter (GALA)
- radar sounder (RIME)
- radio science package (3GM)
- in situ:
- plasma+radio sensors (PEP, RPWI)
- magnetometer (J-MAG)
- spacecraft position+velocity (PRIDE)

- Ganymede (in orbit) & Callisto (12 flybys):
- characterisation of ocean layers
- surface mapping (topography, geology, composition)
- physical properties of icy crusts
- internal mass distribution, interior dynamics & evolution
- Ganymede's intrinsic mg field, interactions with J. magnetosphere

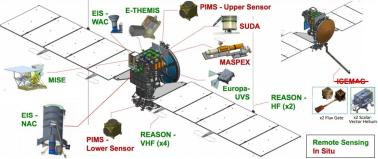
- Ganymede (in orbit) & Callisto (12 flybys):
- characterisation of ocean layers
- surface mapping (topography, geology, composition)
- physical properties of icy crusts
- internal mass distribution, interior dynamics & evolution
- Ganymede's intrinsic mg field, interactions with J. magnetosphere
- Europa (2 flybys):
- composition of non water-ice material
- determination of icy crust thickness

- Ganymede (in orbit) & Callisto (12 flybys):
- characterisation of ocean layers
- surface mapping (topography, geology, composition)
- physical properties of icy crusts
- internal mass distribution, interior dynamics & evolution
- Ganymede's intrinsic mg field, interactions with J. magnetosphere
- Europa (2 flybys):
- composition of non water-ice material
- determination of icy crust thickness
- Jupiter:
- atmosphere (structure, dynamics & composition)
- magnetosphere

- Ganymede (in orbit) & Callisto (12 flybys):
- characterisation of ocean layers
- surface mapping (topography, geology, composition)
- physical properties of icy crusts
- internal mass distribution, interior dynamics & evolution
- Ganymede's intrinsic mg field, interactions with J. magnetosphere
- Europa (2 flybys):
- composition of non water-ice material
- determination of icy crust thickness
- Jupiter:
- atmosphere (structure, dynamics & composition)
- magnetosphere
- Jupiter system:
- moons' interactions with magnetosphere
- gravitational coupling
- long-term tidal evolution of Galilean satellites

NASA flagship mission

2022-25 planned launch 3–6 yr cruise phase trajectory - direct (SLS) - with gravity assists (Delta IV / Falcon)


NASA flagship mission

2022-25 planned launch 3–6 yr cruise phase trajectory - direct (SLS) - with gravity assists (Delta IV / Falcon)

- Multiple Flyby Orbiter (around Jupiter)
- nominal mission:
 - 45 Europa flybys
 - closest-approach altitudes
 - \sim 25–2700 km above surface

Europa Clipper Science Instruments

remote Europa Imaging System (EIS) - Narrow/Wide Angle Cameras Mapping Imaging Spectrometer for Europa (MISE) Ultraviolet Spectrograph/Europa (UVS) Europa THermal EMission Imaging System (E-THEMIS) Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) in situ Plasma Instrument for Magnetic Sounding (PIMS) Europa Clipper Magnetometer (?) MAss Spectrometer for Planetary EXploration/Europa (MASPEX) SUrface Dust mass Analyzer (SUDA)

science goal

Explore Europa to investigate its habitability

science goal

Explore Europa to investigate its habitability

science objectives

Ice Shell & Ocean

Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange

science goal

Explore Europa to investigate its habitability

science objectives

Ice Shell & Ocean

Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange

Composition

Understand the habitability of Europa's ocean through composition and chemistry

science goal

Explore Europa to investigate its habitability

science objectives

Ice Shell & Ocean

Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange

Composition

Understand the habitability of Europa's ocean through composition and chemistry

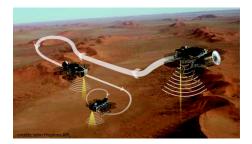

Geology

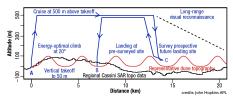
Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities

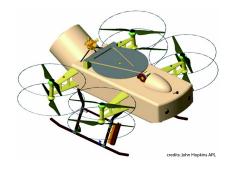
NASA New Frontiers mission

rotorcraft lander mission
 2026 planned launch
 2034 landing on Titan
 ~2 yr baseline mission

NASA New Frontiers mission

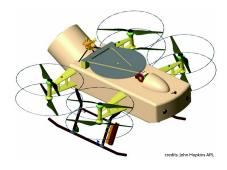

- rotorcraft lander mission
 2026 planned launch
 2034 landing on Titan
 ~2 yr baseline mission
 dense atmosphere & low gravity
- → flying is an ideal way to travel to different areas




NASA New Frontiers mission

- rotorcraft lander mission
 2026 planned launch
 2034 landing on Titan
 ~2 yr baseline mission
- ▶ dense atmosphere & low gravity
 → flying is an ideal way to
 travel to different areas
- most measurements on ground
- flight used to:
 - explore different sites
 - provide context measurements of surroundings

- ▶ analyze chem. components & processes to produce biologically relevant compounds
- ▶ measure atmospheric conditions, identify CH₄ reservoirs, determine transport rates
- ▶ constrain processes to mix organics w liquid water reservoirs (past surface / ocean)
- ▶ search for chemical evidence of water-based or hydrocarbon-based life



science objectives

- \blacktriangleright analyze chem. components & processes to produce biologically relevant compounds
- ▶ measure atmospheric conditions, identify CH₄ reservoirs, determine transport rates
- ▶ constrain processes to mix organics w liquid water reservoirs (past surface / ocean)
- ▶ search for chemical evidence of water-based or hydrocarbon-based life

science payload

- mass spectrometer:
- material sampling, chemical analysis
- gamma-ray and neutron spectrometer:
- surface composition; minor elements
- meteorology, seismic + geophys. sensors:
- monitor atmosphere & surface conditions
- seismic monitoring subsurface activity?
- camera suite:
- char. geologic features, provide context

Notes on the homework

idea reconstruction of interior structure of synthetic satellites

- data provided will include:
- mass M, radius R
- reduced moment of inertia ${\rm MoI}$
- information on the presence of ocean
- limited information on composition
- range of admissible densities / EoS