
Numerical methods

Selected chapters on astrophysics

Pavel Ševeček

sevecek@sirrah.troja.mff.cuni.cz

Astronomical Institute of Charles University

Outline

1. Finite difference method

Explicit vs. implicit schemes. Leapfrog integrator, predictor-corrector methods,

Runge-Kutta, Bulirsch-Stoer. Truncation error and stability. Boundary

conditions. 2D and 3D problems. Solution of sparse linear systems.

2. Finite element method

Weak formulation of PDEs. Method of weighted residuals, Galerkin method.

Mass and stiffness matrix. (Semi-)linearization, Picard iteration. Dirichlet and

Neumann boundary conditions.

3. Smoothed particle hydrodynamics

SPH kernels. Discretization of hydrodynamic equations. Conservation laws vs.

discretization error. Smoothing lengths, adaptive spatial resolution. Artificial

viscosity. Surface representation and surface forces. Initial and boundary

conditions, ghost particles. Efficient neighbor queries.

1

Disclaimer

Before you start coding something, chances are there already is a library

or a code that does what you need, and it does it better that you would

have made it.

Astrophysics Source Code Library

https://ascl.net/

2

What is it about?

• Partial differential equations are everywhere in physics, e.g.:

∇ ·D = ρ

∇ · B = 0

∇× E = −∂B
∂t

∇×H = j +
∂D

∂t

• PDEs generally unsolvable analytically, except for special cases,

limits, etc.

• Approximate solutions required — convert derivatives (”infinitelly

small difference”) into finite differences

3

Problem definition

For general PDE:

L[f](r , t) = 0, r ∈ Ω, t ∈ (t0,∞)

we need to specify:

• Initial conditions

f (r , t0) = f0 ∀r ∈ Ω

• Boundary conditions

S[f](r , t) = 0 ∀r ∈ ∂Ω

e.g.

f (r , t) = f0

4

Problem definition

For general PDE:

L[f](r , t) = 0, r ∈ Ω, t ∈ (t0,∞)

we need to specify:

• Initial conditions

f (r , t0) = f0 ∀r ∈ Ω

• Boundary conditions

S[f](r , t) = 0 ∀r ∈ ∂Ω

e.g.

f (r , t) = f0

4

Finite differences

• Numerically solve one-dimensional equation:

y ′(t) = f (t, y(t))

• Taylor expansion:

y(t + ∆t) = y(t) + y ′(t)∆t +
1

2
y ′′(t)∆t2 + ...

• To linear order:

y ′(t) =
y(t + ∆t)− y(t)

∆t

• Centered derivative:

y ′(t) =
y(t + ∆t)− y(t −∆t)

2∆t

no offset, but twice the interval, worse locality

5

Finite differences

• Numerically solve one-dimensional equation:

y ′(t) = f (t, y(t))

• Taylor expansion:

y(t + ∆t) = y(t) + y ′(t)∆t +
1

2
y ′′(t)∆t2 + ...

• To linear order:

y ′(t) =
y(t + ∆t)− y(t)

∆t

• Centered derivative:

y ′(t) =
y(t + ∆t)− y(t −∆t)

2∆t

no offset, but twice the interval, worse locality

5

Finite differences

• Numerically solve one-dimensional equation:

y ′(t) = f (t, y(t))

• Taylor expansion:

y(t + ∆t) = y(t) + y ′(t)∆t +
1

2
y ′′(t)∆t2 + ...

• To linear order:

y ′(t) =
y(t + ∆t)− y(t)

∆t

• Centered derivative:

y ′(t) =
y(t + ∆t)− y(t −∆t)

2∆t

no offset, but twice the interval, worse locality

5

Higher-order equations

• Second-order equations can be converted into a set of first-order

equations, e.g.

r ′′(t) = −GM

r3
r

is equivalent to:

r ′(t) = v(t)

v ′(t) = −GM

r3
r

• Calculate second derivative:

y(t + ∆t) = y(t) + y ′(t)∆t +
1

2
y ′′(t)∆t2

y(t −∆t) = y(t)− y ′(t)∆t +
1

2
y ′′(t)∆t2

1

2
y(t + ∆t)− y(t) +

1

2
y(t −∆t) = y ′′(t)∆t2

6

Higher-order equations

• Second-order equations can be converted into a set of first-order

equations, e.g.

r ′′(t) = −GM

r3
r

is equivalent to:

r ′(t) = v(t)

v ′(t) = −GM

r3
r

• Calculate second derivative:

y(t + ∆t) = y(t) + y ′(t)∆t +
1

2
y ′′(t)∆t2

y(t −∆t) = y(t)− y ′(t)∆t +
1

2
y ′′(t)∆t2

1

2
y(t + ∆t)− y(t) +

1

2
y(t −∆t) = y ′′(t)∆t2

6

Integrators

• Euler

• Leapfrog

• Runge-Kutta

• Predictor-Corrector

• Bulirsch-Stoer

• ...

7

Euler method

Step computed from derivative at point n:

yn+1 = yn + f (tn, yn)∆t

8

Euler method — properties

+ Fast, simple

− First order accurate :(

− Errors accumulate over time

9

Euler method

• Explicit method:

yn+1 = yn + f (tn, yn) ∆t

• Implicit method:

yn+1 = yn + f (tn+1, yn+1) ∆t

• May be combined — Crank-Nicolson scheme:

yn+1 = yn + ((1− θ)f (tn, yn) + θf (tn+1, yn+1)) ∆t

10

Explicit (forward) vs. implicit (backward)

Explicit yn+1 = yn + f (tn, yn) ∆t

+ RHS can be computed from known values yn

+ Function f can be non-linear

− Generally worse stability properties

Implicit methods yn+1 = yn + f (tn+1, yn+1) ∆t

+ More stable, allows larger time steps

− Both LHS and RHS depend on yn+1

− Function f must be either linear or approximated by

e.g. Newton-Rhapson method

−→ leads to a (sparse) system of linear equations

11

Explicit (forward) vs. implicit (backward)

Explicit yn+1 = yn + f (tn, yn) ∆t

+ RHS can be computed from known values yn

+ Function f can be non-linear

− Generally worse stability properties

Implicit methods yn+1 = yn + f (tn+1, yn+1) ∆t

+ More stable, allows larger time steps

− Both LHS and RHS depend on yn+1

− Function f must be either linear or approximated by

e.g. Newton-Rhapson method

−→ leads to a (sparse) system of linear equations

11

Example: exponential damping

Solve equation:
dy

dt
= −ky

• Explicit Euler: yn+1 = yn − kyn∆t

• Implicit Euler: yn+1 = yn − kyn+1∆t = yn/(1 + k∆t)

12

Example: exponential damping

13

Leapfrog

• Half-step difference between positions and velocities

• Drift-Kick-Drift (DKD)

xn+ 1
2

= xn +
1

2
vndt

vn+1 = vn + f (tn+ 1
2
, xn+ 1

2
)dt

xn+1 = xn+ 1
2

+
1

2
vn+1dt

• Kick-Drift-Kick (KDK)

vn+ 1
2

= vn +
1

2
f (tn, xn)dt

xn+1 = xn + vn+ 1
2
dt

vn+1 = vn+ 1
2

+
1

2
f (tn+1, xn+1)dt

14

Leapfrog

• Half-step difference between positions and velocities

• Drift-Kick-Drift (DKD)

xn+ 1
2

= xn +
1

2
vndt

vn+1 = vn + f (tn+ 1
2
, xn+ 1

2
)dt

xn+1 = xn+ 1
2

+
1

2
vn+1dt

• Kick-Drift-Kick (KDK)

vn+ 1
2

= vn +
1

2
f (tn, xn)dt

xn+1 = xn + vn+ 1
2
dt

vn+1 = vn+ 1
2

+
1

2
f (tn+1, xn+1)dt

14

Leapfrog

• With constant time step — KDKDKDKD ...

• Time-reversible

• Symplectic — conserves total energy

15

2th order Runge-Kutta

Evaluate y ′n, do a “test” step by ∆t/2, evaluate y ′ at the center of the

interval and use it for the final step

∆y1 = f (tn, yn) ∆t

∆y2 = f

(
tn +

∆t

2
, yn +

∆y1

2

)
∆t

yn+1 = yn + ∆y2

16

2th order Runge-Kutta

Evaluate y ′n, do a “test” step by ∆t/2, evaluate y ′ at the center of the

interval and use it for the final step

∆y1 = f (tn, yn) ∆t

∆y2 = f

(
tn +

∆t

2
, yn +

∆y1

2

)
∆t

yn+1 = yn + ∆y2

16

4th order Runge-Kutta

Same idea, except we do 4 steps:

yn+1 = yn +
1

6
(∆y1 + 2∆y2 + 2∆y3 + ∆y4)

where

∆y1 = f (tn, yn) ∆t

∆y2 = f

(
tn +

∆t

2
, yn +

∆y1

2

)
∆t

∆y3 = f

(
tn +

∆t

2
, yn +

∆y2

2

)
∆t

∆y4 = f (tn + ∆t, yn + ∆y3) ∆t

17

Runge-Kutta — properties

• The go-to integrator

• Accuracy O(∆t4)

• Works with discontinuities and “ugly” functions

• Requires four evaluation of f per timestep — good trade-of between

performance and accuracy

18

Predictor-Corrector

• Prediction using f (tn, yn):

ypred
n+1 = yn + f (tn, yn)∆t

• Correction using f (tn+1, y
pred
n+1):

yn+1 = yn +
1

2

(
f (tn, yn) + f (tn+1, y

pred
n+1)

)
• Can be modified to 1 function evaluation per time step

• The difference between prediction and correction — error estimate

19

Modified midpoint method

• Does m substeps of size h = ∆t/m within single timestep

• Needs to evaluate function f (t, y) (n + 1)-times:

z0 = yn

z1 = z0 + hf (tn, z0)

...

zm = zm−2 + 2hf (tm + (m − 1)h, zm−1)

• Finally

yn+1 = yn +
1

2
(zm + zm−1 + hf (x + ∆t, zm))

• Mainly used as part of Bulirsch-Stoer integrator

20

Bulirsch-Stoer

• Precise solution yn+1 — approximated by estimates with different

number of substeps m

• Larger m −→ lower numerical error

• We can view the true solution as function of m:

1. compute estimates for various m

2. fit estimates with a smooth function (polynomial, rational function,

...)

3. find limit, corresponding to substep size h→ 0

• Requires smooth function f (t, x), does not handle discontinuities

well

21

Bulirsch-Stoer

22

Adaptive timestep

• Time step should be computed automatically be the integrator

• Do larger steps when quantities are constant or change linearly

• Do smaller steps when quantities change rapidly

• Time step controls stability and truncation error

y(t + ∆t) = y(t) + y ′(t)∆t +

error estimate
1

2
y ′′(t)∆t2

23

Step doubling

• Two steps:

y1(t + ∆t) = y(t) + f (t, y(t)) ∆t

y1(t + 2∆t) = y1(t + ∆t) + f (t + ∆t, y1(t + ∆t))∆t

• One double step:

y2(t + 2∆t) = y(t) + 2f (t, y(t))∆t

• Select ∆t so that:

‖y1 − y2‖ < ε

24

Adaptive timestep

• Value-to-derivative ratio:

∆t = C
yn
y ′n

= C
yn

f (tn, yn)

−→ bounded relative error

• Problem for yn → 0 — ∆t = 0

• Relative comparison does not work near zero

• Workaround: Use relative error bound for |yn| � 0 and absolute

bound for yn ' 0:

∆t = C
|yn|+ y0

|y ′n|
• Cons: Necessary to select y0 — free parameter (for each equation)

25

Adaptive timestep

• Value-to-derivative ratio:

∆t = C
yn
y ′n

= C
yn

f (tn, yn)

−→ bounded relative error

• Problem for yn → 0 — ∆t = 0

• Relative comparison does not work near zero

• Workaround: Use relative error bound for |yn| � 0 and absolute

bound for yn ' 0:

∆t = C
|yn|+ y0

|y ′n|
• Cons: Necessary to select y0 — free parameter (for each equation)

25

Boundary conditions

Matrix problem:

Aijuj = bi

• Dirichlet condition — fixed value on the boundary

u1 = c1, uN = cN

−→ modify the matrix and the right-hand side vector:

A11 = ANN = 1

A1j = ANj = 0 ∀j , 2 ≤ j ≤ N − 1

b1 = c1, bN = cN

or alternatively

A11 = ANN = L

b1 = Lc1, bN = LcN

where L ' 1030

26

Boundary conditions

Matrix problem:

Aijuj = bi

• Dirichlet condition — fixed value on the boundary

u1 = c1, uN = cN

−→ modify the matrix and the right-hand side vector:

A11 = ANN = 1

A1j = ANj = 0 ∀j , 2 ≤ j ≤ N − 1

b1 = c1, bN = cN

or alternatively

A11 = ANN = L

b1 = Lc1, bN = LcN

where L ' 1030

26

Boundary conditions

• Neumann condition — fixed derivative on the boundary

u′1 = d1, u
′
N = dN

−→ ghost points — u0, uN+1:

u′1 =
u2 − u0

2dx
, u′N =

uN+1 − uN−1

2dx

27

2D finite differences

Solve

y ′(x , t) = f (x , t, y(x , t))

• Create grid (xi , tj), 0 ≤ i ≤ Nx , 0 ≤ j ≤ Nt

• Requires rectangular computational domain

28

Non-uniform grids

• Constant spatial resolution might be inefficient

• Select fine resolution where the solution changes rapidly,

coarse resolution where the solution is constant (or changes linearly)

29

Non-uniform grids

(x , y) (x + h1, y)(x − h2, y)

(x , y + h3)

(x , y − h4)

Derivatives have to be generalized, e.g.:

∂2f

∂x2
=

2

h1h2

(
h2

h1 + h2
f (x + h1, y)− f (x , y) +

h1

h1 + h2
f (x − h2, y)

)

30

Non-uniform grids

• Some cells have multiple neighbors, e.g. φ4:

−→ use average of φ11 and φ13

• Cell centered vs. node centered discretization

• Typically implemented using quadtree (octree)

31

Quadtree

• Cells have sizes 2n

• O(logN) queries

32

Stability

• Discretization approximates exact solution at t = t0 −→
discretization approximates exact solution at t →∞?

• Errors damped over time −→ numerically stable solution

• Errors grow over time −→ numerically unstable solution

• von Neumann stability analysis —

solution as superposition of harmonic waves

u(x , t) ∼ exp(ikx) exp(−iωt)

33

Stability

• Discretization approximates exact solution at t = t0 −→
discretization approximates exact solution at t →∞?

• Errors damped over time −→ numerically stable solution

• Errors grow over time −→ numerically unstable solution

• von Neumann stability analysis —

solution as superposition of harmonic waves

u(x , t) ∼ exp(ikx) exp(−iωt)

33

Stability analysis — example

Diffusion equation:

un+1
j − unj

∆t
= D

unj+1 − 2unj + unj−1

∆x2

un+1
j = unj + R(unj+1 − 2unj + unj−1), R =

D∆t

∆x2

Substitute unj = exp(ik∆xj):

un+1
j = e ik∆xj + R(e ik∆x(j+1) − 2e ik∆xj + e ik∆x(j−1))

un+1
j = e ik∆xj

(
1 + R(e ik∆x + e−ik∆x − 2)

)

34

Stability analysis — example

Define a growth factor:

G = e−iωt = 1− 2R (1− cos(k∆x))

Numerical scheme is stable if |G | ≤ 1 ∀k , thus:

|G (k)| = |1− 2R (1− cos(k∆x)) | ≤ |1− 4R|

Numerical scheme is stable for:

R =
D∆t

∆x2
≤ 1

2

35

Solving linear systems

• Implicit schemes typically lead to a set of equations:

Aijxj = bi

where Aij is a (sparse) matrix, bj is a known vector of coefficients,

xj is the vector of solutions

• Precise methods (SVD-decomposition, LU, Cholesky)

• Iterative methods (Conjugate gradient)

36

Gradient descent

• Minimization of differentiable function

37

Gradient descent

Find a minimum of a function F (x):

1. Start with a guess x0

2. Compute gradient ∇F (xn)

3. Do a step

xn+1 = xn − γn∇F (xn)

4. If ‖xn+1 − xn‖ > ε, go to 2

To solve a linear system Ax = b, do least-squares minimization:

F (x) = ‖Ax − b‖2

Using Euclidean metric:

∇F (x) = 2AT (Ax − b)

38

Gradient descent

Find a minimum of a function F (x):

1. Start with a guess x0

2. Compute gradient ∇F (xn)

3. Do a step

xn+1 = xn − γn∇F (xn)

4. If ‖xn+1 − xn‖ > ε, go to 2

To solve a linear system Ax = b, do least-squares minimization:

F (x) = ‖Ax − b‖2

Using Euclidean metric:

∇F (x) = 2AT (Ax − b)

38

Gradient descent

• Iterative method

• Faster for low precision

• Convergence very slow near the minimum

May end up in local minimum — depends on the initial guess x0

•

39

Example: wave equation

Solve
∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
Discretized:

u̇n+1
x,y = u̇nx,y + c2

(
un+1
x+1,y − 2un+1

x,y + un+1
x−1,y

dx2
+

un+1
x,y+1 − 2un+1

x,y + un+1
x,y−1

dx2

)
dt

un+1
x,y = unx,y + u̇n+1

x,y dt

40

Example: wave equation

Implicit discretization — rewrite to form Ax = b:

x =



un+1
0,0

...

un+1
X ,Y

u̇n+1
0,0

...

u̇n+1
X ,y


b =



un0,0
...

unX ,Y
u̇n0,0
...

u̇nX ,y


Source code:

https://gitlab.com/sevecekp/pdesolvers

41

Finite element method

• Popular method for engineering applications

• Handles arbitrary domains

— FDM requires parameterizable domains (rectangular, spherical, ...)

• Adaptive spatial resolution

— FDM cells have sizes of 2n

• Implicit handling of boundary conditions

• Much more difficult to implement compared to FDM

• Used for hydrodynamics, heat diffusion, structural analysis, ...

42

Finite element method

• Domain is discretized in elements — typically triangles in 2D,

tetrahedra in 3D

43

Finite element method

• Goal: Given a differential operator L, find a function u(r) for which:

L(u) = 0

(for example ∇2u = 0)

• Replace function u(r) with a linear combination of basis functions:

û(r) ≡
M∑
i=1

uiNi (r)

• Problem of finding u(r) (infinite dimensions)

−→ finding finite number of ui

• Generally, NO linear combination will yield:

L(û) = 0

• Instead, we minimize value ‖L(û)‖ — residuum

44

Finite element method

• Goal: Given a differential operator L, find a function u(r) for which:

L(u) = 0

(for example ∇2u = 0)

• Replace function u(r) with a linear combination of basis functions:

û(r) ≡
M∑
i=1

uiNi (r)

• Problem of finding u(r) (infinite dimensions)

−→ finding finite number of ui

• Generally, NO linear combination will yield:

L(û) = 0

• Instead, we minimize value ‖L(û)‖ — residuum

44

Finite element method

• Goal: Given a differential operator L, find a function u(r) for which:

L(u) = 0

(for example ∇2u = 0)

• Replace function u(r) with a linear combination of basis functions:

û(r) ≡
M∑
i=1

uiNi (r)

• Problem of finding u(r) (infinite dimensions)

−→ finding finite number of ui

• Generally, NO linear combination will yield:

L(û) = 0

• Instead, we minimize value ‖L(û)‖ — residuum

44

Finite element method

• Goal: Given a differential operator L, find a function u(r) for which:

L(u) = 0

(for example ∇2u = 0)

• Replace function u(r) with a linear combination of basis functions:

û(r) ≡
M∑
i=1

uiNi (r)

• Problem of finding u(r) (infinite dimensions)

−→ finding finite number of ui

• Generally, NO linear combination will yield:

L(û) = 0

• Instead, we minimize value ‖L(û)‖ — residuum

44

Minimizing the residuumm

• Minimize ‖L(û)‖ — what is ‖ · ‖ ?

• Least squares: minimize the square of L(û)

∂

∂uj

∫
L2(û) dΩ = 0 ∀j = 1, ...,M

• Method of weighted residuals — minimizing by solving set of

equations: ∫
L(û)Wj dΩ = 0 ∀j = 1, ...,M

where Wj are weighting (test) functions (weak formulation)

• Using Wi = Ni −→ Galerkin method

45

Minimizing the residuumm

• Minimize ‖L(û)‖ — what is ‖ · ‖ ?

• Least squares: minimize the square of L(û)

∂

∂uj

∫
L2(û) dΩ = 0 ∀j = 1, ...,M

• Method of weighted residuals — minimizing by solving set of

equations: ∫
L(û)Wj dΩ = 0 ∀j = 1, ...,M

where Wj are weighting (test) functions (weak formulation)

• Using Wi = Ni −→ Galerkin method

45

Minimizing the residuumm

• Minimize ‖L(û)‖ — what is ‖ · ‖ ?

• Least squares: minimize the square of L(û)

∂

∂uj

∫
L2(û) dΩ = 0 ∀j = 1, ...,M

• Method of weighted residuals — minimizing by solving set of

equations: ∫
L(û)Wj dΩ = 0 ∀j = 1, ...,M

where Wj are weighting (test) functions (weak formulation)

• Using Wi = Ni −→ Galerkin method

45

Minimizing the residuumm

• Minimize ‖L(û)‖ — what is ‖ · ‖ ?

• Least squares: minimize the square of L(û)

∂

∂uj

∫
L2(û) dΩ = 0 ∀j = 1, ...,M

• Method of weighted residuals — minimizing by solving set of

equations: ∫
L(û)Wj dΩ = 0 ∀j = 1, ...,M

where Wj are weighting (test) functions (weak formulation)

• Using Wi = Ni −→ Galerkin method

45

Minimizing the residuumm

• Solving the set of equations
∫
L(û)Wj dΩ = 0 is problem-specific

• We need to get

a(û,Nj) = b(Nj)

where a is a bilinear form, b is a linear form

• Then ∑
i

a(Ni ,Nj)ui = b(Nj)

i.e. solve a linear system

46

Minimizing the residuumm

• Solving the set of equations
∫
L(û)Wj dΩ = 0 is problem-specific

• We need to get

a(û,Nj) = b(Nj)

where a is a bilinear form, b is a linear form

• Then ∑
i

a(Ni ,Nj)ui = b(Nj)

i.e. solve a linear system

46

Example: Poisson equation

Solve one-dimensional equation:

L(u) = u′′(x) + f (x) = 0

with boundary condition u(0) = u(1) = 0

• Galerkin method:∑
j

uj

∫
N ′′j (x)Ni (x) dx = −

∫
f (x)Ni (x) dx

• Choose Ni (x) = sin iπx −→ N ′′i (x) = −i2π2Ni (x)

• Automatically satisfies the boundary conditions

• Basis functions orthogonal −→ leads to diagonal matrix

47

Example: Poisson equation

Solve one-dimensional equation:

L(u) = u′′(x) + f (x) = 0

with boundary condition u(0) = u(1) = 0

• Galerkin method:∑
j

uj

∫
N ′′j (x)Ni (x) dx = −

∫
f (x)Ni (x) dx

• Choose Ni (x) = sin iπx −→ N ′′i (x) = −i2π2Ni (x)

• Automatically satisfies the boundary conditions

• Basis functions orthogonal −→ leads to diagonal matrix

47

Example: Poisson equation

Solve one-dimensional equation:

L(u) = u′′(x) + f (x) = 0

with boundary condition u(0) = u(1) = 0

• Galerkin method:∑
j

uj

∫
N ′′j (x)Ni (x) dx = −

∫
f (x)Ni (x) dx

• Choose Ni (x) = sin iπx −→ N ′′i (x) = −i2π2Ni (x)

• Automatically satisfies the boundary conditions

• Basis functions orthogonal −→ leads to diagonal matrix

47

Example: Poisson equation

• Integral on LHS can be computed:∫
N ′′j (x)Ni (x) dx = − j2π2

2
δij

• We get the solution:

ui =
2

i2π2

∫
f (x) sin iπx dx

48

Example: Poisson equation

• Integral on LHS can be computed:∫
N ′′j (x)Ni (x) dx = − j2π2

2
δij

• We get the solution:

ui =
2

i2π2

∫
f (x) sin iπx dx

48

Time dependence

• Use finite differences for temporal integration

• Make coefficients ui functions of time

û(r , t) =
M∑
i=1

ui (t)Ni (r)

• We already solve a matrix problem

— implicit time stepping “for free”

49

Basis functions

• Connected to mesh elements (vertices, edges, ...)

• Typically piecewise polynomial functions — Lagrange elements

• Piecewise constant P0 — associated with the barycenter of the

triangle (tetrahedron)

• Piecewise linear P1 — associated with mesh vertices

50

Basis functions

• Connected to mesh elements (vertices, edges, ...)

• Typically piecewise polynomial functions — Lagrange elements

• Piecewise constant P0 — associated with the barycenter of the

triangle (tetrahedron)

• Piecewise linear P1 — associated with mesh vertices

50

Basis functions

• Connected to mesh elements (vertices, edges, ...)

• Typically piecewise polynomial functions — Lagrange elements

• Piecewise constant P0 — associated with the barycenter of the

triangle (tetrahedron)

• Piecewise linear P1 — associated with mesh vertices

50

Basis functions

• Piecewise quadratic P2 — associated with vertices and edge

midpoints

• ... and many others (FreeFem++ has ∼ 35 different elements)

• Only non-zero in neighborhood −→ leads to sparse matrix

51

Basis functions

• Basis function N(x , y): sum of shape functions

φi (x , y) = ai + bix + ciy for (x , y) ∈ triangle(i)

= 0 elsewhere

• Single P1 basis function:

52

Computing P1 functions

• 2D triangle with vertices (xi , yi)

• Shape function associated with vertex j :

φj(x , y) = aj + bjx + cj

• Coefficients a, b, c determined from constraint:

φj(xi , yi) = δij

• Rewriting to a matrix problem: 1 xj yj
1 xk yk
1 xl yl


 a

b

c

 =

 1

0

0



53

Computing P1 functions

• 2D triangle with vertices (xi , yi)

• Shape function associated with vertex j :

φj(x , y) = aj + bjx + cj

• Coefficients a, b, c determined from constraint:

φj(xi , yi) = δij

• Rewriting to a matrix problem: 1 xj yj
1 xk yk
1 xl yl


 a

b

c

 =

 1

0

0



53

Computing P1 functions

• 2D triangle with vertices (xi , yi)

• Shape function associated with vertex j :

φj(x , y) = aj + bjx + cj

• Coefficients a, b, c determined from constraint:

φj(xi , yi) = δij

• Rewriting to a matrix problem: 1 xj yj
1 xk yk
1 xl yl


 a

b

c

 =

 1

0

0


53

Computing matrices

Applied on diffusion problem:

∂u

∂t
= c∇2u

• Weak formulation: ∫
∂u

∂t
NidΩ = c

∫
∇2uNidΩ

• Explicit time integration — subtitute:

∇2u =
∑
j

u0
j ∇2Nj

∂u/∂t = (uj − u0
j)/∆t

where u0 is solution from previous time step (known values). Then:∑
j

uj − u0

∆t

∫
NiNjdΩ = c

∑
j

u0
j

∫
∇2NiNjdΩ

54

Computing matrices

Applied on diffusion problem:

∂u

∂t
= c∇2u

• Weak formulation: ∫
∂u

∂t
NidΩ = c

∫
∇2uNidΩ

• Explicit time integration — subtitute:

∇2u =
∑
j

u0
j ∇2Nj

∂u/∂t = (uj − u0
j)/∆t

where u0 is solution from previous time step (known values). Then:∑
j

uj − u0

∆t

∫
NiNjdΩ = c

∑
j

u0
j

∫
∇2NiNjdΩ

54

Computing matrices

• Assuming ∇u = 0 at ∂Ω — apply divergence theorem:∑
j

uj − u0

∆t

∫
NiNjdΩ = −c

∑
j

u0
j

∫
∇Ni · ∇NjdΩ

• Integral on LHS — mass matrix:

Mij =

∫
NiNj dΩ

• Integral on RHS — stiffness matrix:

Kij =

∫
∇Ni · ∇Nj dΩ

• We get:

M
u − u0

∆t
= −cKu0

55

Computing matrices

• Assuming ∇u = 0 at ∂Ω — apply divergence theorem:∑
j

uj − u0

∆t

∫
NiNjdΩ = −c

∑
j

u0
j

∫
∇Ni · ∇NjdΩ

• Integral on LHS — mass matrix:

Mij =

∫
NiNj dΩ

• Integral on RHS — stiffness matrix:

Kij =

∫
∇Ni · ∇Nj dΩ

• We get:

M
u − u0

∆t
= −cKu0

55

Computing matrices

• Assuming ∇u = 0 at ∂Ω — apply divergence theorem:∑
j

uj − u0

∆t

∫
NiNjdΩ = −c

∑
j

u0
j

∫
∇Ni · ∇NjdΩ

• Integral on LHS — mass matrix:

Mij =

∫
NiNj dΩ

• Integral on RHS — stiffness matrix:

Kij =

∫
∇Ni · ∇Nj dΩ

• We get:

M
u − u0

∆t
= −cKu0

55

Computing matrices

• Assuming ∇u = 0 at ∂Ω — apply divergence theorem:∑
j

uj − u0

∆t

∫
NiNjdΩ = −c

∑
j

u0
j

∫
∇Ni · ∇NjdΩ

• Integral on LHS — mass matrix:

Mij =

∫
NiNj dΩ

• Integral on RHS — stiffness matrix:

Kij =

∫
∇Ni · ∇Nj dΩ

• We get:

M
u − u0

∆t
= −cKu0

55

Mass lumping

• Both M and K depend only on the domain subdivision and selected

basis function

• For piecewise linear elements P1, ∇Ni is piecewise constant

−→ integral K is reduced to the area of triangle

• We get:

M
u

∆t
= −cKu0 + M

u0

∆t

• RHS — known values

• LHS — requires M−1

−→ can be further simplified using mass lumping (diagonalization)

56

Mass lumping

• Both M and K depend only on the domain subdivision and selected

basis function

• For piecewise linear elements P1, ∇Ni is piecewise constant

−→ integral K is reduced to the area of triangle

• We get:

M
u

∆t
= −cKu0 + M

u0

∆t

• RHS — known values

• LHS — requires M−1

−→ can be further simplified using mass lumping (diagonalization)

56

Mass lumping

• Diagonalization of M — tradeoff between precision and

performance/robustness of the solver

• Row sum method:

M̃ii =
∑
j

Mij

• Diagonal scaling:

M̃ii = fMii

57

Non-linear equations

Goal: reduce the discretized equation into:∑
i

a(Ni ,Nj)ui = b(Nj)

or in matrix form:

Au = b

i For non-linear equations, we get e.g.:

A(u)u = b

−→ Picard iteration method

58

Non-linear equations

Goal: reduce the discretized equation into:∑
i

a(Ni ,Nj)ui = b(Nj)

or in matrix form:

Au = b

i For non-linear equations, we get e.g.:

A(u)u = b

−→ Picard iteration method

58

Picard iterations

Replace A(u)u = b with A(u0)u = b, using a guess u0.

Then:

1. Solve the linear problem −→ yields solution u1

2. Replace u0 with the solution u1, compute new matrix A

3. Solve new problem A(uk)uk+1 = b

4. Iterate until ‖uk+1 − uk‖ < ε

Will it always converge? −→ NO

59

Picard iterations

Replace A(u)u = b with A(u0)u = b, using a guess u0.

Then:

1. Solve the linear problem −→ yields solution u1

2. Replace u0 with the solution u1, compute new matrix A

3. Solve new problem A(uk)uk+1 = b

4. Iterate until ‖uk+1 − uk‖ < ε

Will it always converge?

−→ NO

59

Picard iterations

Replace A(u)u = b with A(u0)u = b, using a guess u0.

Then:

1. Solve the linear problem −→ yields solution u1

2. Replace u0 with the solution u1, compute new matrix A

3. Solve new problem A(uk)uk+1 = b

4. Iterate until ‖uk+1 − uk‖ < ε

Will it always converge? −→ NO

59

Relaxation method

We can improve the convergence using relaxation method,

i.e. weight new and previous solution:

A(uk)u? = b

uk+1 := ωu? + (1− ω)uk

where ω is the relaxation parameter.

• Essentially decreases the iteration step

• General method, usable outside FEM

• In some cases can be used with ω > 1 to speed up the convergence

−→ over-relaxation

60

Relaxation method

We can improve the convergence using relaxation method,

i.e. weight new and previous solution:

A(uk)u? = b

uk+1 := ωu? + (1− ω)uk

where ω is the relaxation parameter.

• Essentially decreases the iteration step

• General method, usable outside FEM

• In some cases can be used with ω > 1 to speed up the convergence

−→ over-relaxation

60

Relaxation method

Example: linearization of the radiative term ∝ u4,

i.e. iterative solution of A(u3
k)uk+1 = b

61

Boundary conditions

• Dirichlet or Neumann

• Essential boundary conditions — explicitly imposed on the solution:∫
Ω

L(û)Wj dΩ +
n∑

k=1

∮
Γk

Sk(û)W k
j dΓ = 0

for the k-th boundary condition

• Natural boundary conditions — embedded into the equations,

satisfied automatically when finding the solution

• Usually Dirichlet ∼ essential and Neumann ∼ natural (but not always)

62

Boundary conditions

• Dirichlet or Neumann

• Essential boundary conditions — explicitly imposed on the solution:∫
Ω

L(û)Wj dΩ +
n∑

k=1

∮
Γk

Sk(û)W k
j dΓ = 0

for the k-th boundary condition

• Natural boundary conditions — embedded into the equations,

satisfied automatically when finding the solution

• Usually Dirichlet ∼ essential and Neumann ∼ natural (but not always)

62

Boundary conditions

• Dirichlet or Neumann

• Essential boundary conditions — explicitly imposed on the solution:∫
Ω

L(û)Wj dΩ +
n∑

k=1

∮
Γk

Sk(û)W k
j dΓ = 0

for the k-th boundary condition

• Natural boundary conditions — embedded into the equations,

satisfied automatically when finding the solution

• Usually Dirichlet ∼ essential and Neumann ∼ natural (but not always)

62

Boundary conditions

• Dirichlet or Neumann

• Essential boundary conditions — explicitly imposed on the solution:∫
Ω

L(û)Wj dΩ +
n∑

k=1

∮
Γk

Sk(û)W k
j dΓ = 0

for the k-th boundary condition

• Natural boundary conditions — embedded into the equations,

satisfied automatically when finding the solution

• Usually Dirichlet ∼ essential and Neumann ∼ natural (but not always)

62

Natural boundary conditions

Example: diffusion equation in domain Ω

∂u

∂t
= c∇2u

with boundary condition at ∂Ω:

n · ∇u = f

We thus solve: ∫
Ω

∂u

∂t
NidΩ = c

∫
Ω

∇2uNidΩ

From divergence theorem:∫
Ω

∇2uNidΩ =

∮
∂Ω

∇u · nNidΣ−
∫
Ω

∇u · ∇NidΩ

63

Natural boundary conditions

Example: diffusion equation in domain Ω

∂u

∂t
= c∇2u

with boundary condition at ∂Ω:

n · ∇u = f

We thus solve: ∫
Ω

∂u

∂t
NidΩ = c

∫
Ω

∇2uNidΩ

From divergence theorem:∫
Ω

∇2uNidΩ =

∮
∂Ω

∇u · nNidΣ−
∫
Ω

∇u · ∇NidΩ

63

Natural boundary conditions

Plug our BC into the surface term

∫
Ω

∂u

∂t
NidΩ = c

∮
∂Ω

fNidΣ +

∫
Ω

∇u · ∇NidΩ



• Term n · ∇u no longer in the equation

• For f = 0, the equation has no surface term, yet still satisfies n · ∇u
at ∂Ω

64

Natural boundary conditions

Plug our BC into the surface term

∫
Ω

∂u

∂t
NidΩ = c

∮
∂Ω

fNidΣ +

∫
Ω

∇u · ∇NidΩ



• Term n · ∇u no longer in the equation

• For f = 0, the equation has no surface term, yet still satisfies n · ∇u
at ∂Ω

64

Usage

65

Usage

66

Usage

67

Usage (astrophysics)

• For spherical/cylindrical/rectangular domains, FDM or FVM

preferred

• Example: Solve a heat diffusion equation in a boulder on the surface

of an asteroid

68

FEM Codes

• libMesh

• FreeFEM++

• deal.II

• ParaFEM

• OOFEM

• ...

69

Example: Planar strain-stress problem

• Solve distribution of stresses inside the body

• Input:

– external forces deforming the body

– fixed nodes (constraints)

• Using:

– Eigen library (matrix solvers)

– CGAL library (mesh generation)

• Source code:

https://gitlab.com/sevecekp/pdesolvers/fem

70

Example: Planar strain-stress problem

• Linear strain-stress relation — Hooke’s law

σ = Dε

where σ is the stress tensor, ε the strain tensor.

• Planar strain −→ only non-zero components are:

ε =

 εx
εy
γxy

 =


∂δx
∂x
∂δy
∂y

∂δx
∂y +

∂δy
∂x


where δ is the displacement vector

• Relation between displacements and external forces (loads):

Kδ = F

where F is the vector of forces, K is the stiffness matrix

71

Example: Planar strain-stress problem

• Basis functions −→ used for interpolation of displacements

δ(x , y) = a1 + a2x + a3y

• Displacement values at nodes (xi , yi), (xj , yj), (xk , yk):

δi = a1 + a2xi + a3yi

δj = a1 + a2xj + a3yj

δk = a1 + a2xk + a3yk

• Inverting the matrix (C): a1

a2

a3

 =

 1 xi yi
1 xj yj
1 xk yk


−1 δi

δj
δk


72

Example: Planar strain-stress problem

• Shape functions:(
Ni Nj Nk

)
=
(

1 x y
)

C−1

• Using Ns, we can compute strain ε:

 εx
εy
γxy

 =


∂Ni

∂x 0
∂Nj

∂x 0 ∂Nk

∂x 0

0 ∂Ni

∂y 0
∂Nj

∂y 0 ∂Nk

∂y
∂Ni

∂y
∂Ni

∂x
∂Nj

∂y
∂Nj

∂x
∂Nk

∂y
∂Nk

∂x




δxi
δyi
δxj
δyj
δxk
δyk


• Denoting the RHS matrix as B:

ε = Bδe

where δe are displacement components

73

Example: Planar strain-stress problem

• Stress σ:

σ = DBδe

• Relation between the displacements and forces —

use the principle of virtual work

• Infinitesimal displacements dδ — compute the work dA

dA = dε · σ = dδBTσ

• Plugging in the σ:

dA = dδeBTDBδe

• Virtual work of external forces = total work of internal stresses,

hence:

dδe · F =

∫
e

dδeBTDBδedV

74

Example: Planar strain-stress problem

• Equation holds for any displacement dδe :

F =

∫
e

BTDBδedV

• Nodal displacements δe constant

−→ integral yields the stiffness matrix:

K =

∫
e

BTDBdV

• Homogeneous material −→ integral reduces to:

K = BTDB
det C

2

• Once K is computed, solve:

Kδ = F

75

Example: Planar strain-stress problem

• Problem ill-posed without contraints — whole body could be

displaced

• The simplest contraint — stationary node

• Apply constraint on node i −→ set force F i = 0 and elements of the

stiffness matrix:

Kij = δij

Kji = δij

76

Smoothed particle hydrodynamics

• Mainly used for solution of hydrodynamical equations

• Lagrangian method!

• Grid-less, no computational domain

−→ suitable for problems where the domain is not a priori known

• Automatic adapative spatial resolution

• Easily extensible (not fixed to a particular problem)

• Simple to implement

• Generally slower compared to grid-based methods (grid has fixed

topology, particle neighbors change over time)

• Always gives some result (no convergence issues), although it may

not be correct (particle interpenetration, artificial clumping, unphysical mixing

of fluids, etc.)

• Comes in a lot of “flavors” (SSPH, CSPH, ASPH, GSPH, XSPH,

δ-SPH, DISPH, ...)

77

Smoothed particle hydrodynamics

• Mainly used for solution of hydrodynamical equations

• Lagrangian method!

• Grid-less, no computational domain

−→ suitable for problems where the domain is not a priori known

• Automatic adapative spatial resolution

• Easily extensible (not fixed to a particular problem)

• Simple to implement

• Generally slower compared to grid-based methods (grid has fixed

topology, particle neighbors change over time)

• Always gives some result (no convergence issues), although it may

not be correct (particle interpenetration, artificial clumping, unphysical mixing

of fluids, etc.)

• Comes in a lot of “flavors” (SSPH, CSPH, ASPH, GSPH, XSPH,

δ-SPH, DISPH, ...)

77

Smoothed particle hydrodynamics

• Mainly used for solution of hydrodynamical equations

• Lagrangian method!

• Grid-less, no computational domain

−→ suitable for problems where the domain is not a priori known

• Automatic adapative spatial resolution

• Easily extensible (not fixed to a particular problem)

• Simple to implement

• Generally slower compared to grid-based methods (grid has fixed

topology, particle neighbors change over time)

• Always gives some result (no convergence issues), although it may

not be correct (particle interpenetration, artificial clumping, unphysical mixing

of fluids, etc.)

• Comes in a lot of “flavors” (SSPH, CSPH, ASPH, GSPH, XSPH,

δ-SPH, DISPH, ...)

77

Smoothed particle hydrodynamics

• Mainly used for solution of hydrodynamical equations

• Lagrangian method!

• Grid-less, no computational domain

−→ suitable for problems where the domain is not a priori known

• Automatic adapative spatial resolution

• Easily extensible (not fixed to a particular problem)

• Simple to implement

• Generally slower compared to grid-based methods (grid has fixed

topology, particle neighbors change over time)

• Always gives some result (no convergence issues), although it may

not be correct (particle interpenetration, artificial clumping, unphysical mixing

of fluids, etc.)

• Comes in a lot of “flavors” (SSPH, CSPH, ASPH, GSPH, XSPH,

δ-SPH, DISPH, ...)

77

Smoothed particle hydrodynamics

• Mainly used for solution of hydrodynamical equations

• Lagrangian method!

• Grid-less, no computational domain

−→ suitable for problems where the domain is not a priori known

• Automatic adapative spatial resolution

• Easily extensible (not fixed to a particular problem)

• Simple to implement

• Generally slower compared to grid-based methods (grid has fixed

topology, particle neighbors change over time)

• Always gives some result (no convergence issues), although it may

not be correct (particle interpenetration, artificial clumping, unphysical mixing

of fluids, etc.)

• Comes in a lot of “flavors” (SSPH, CSPH, ASPH, GSPH, XSPH,

δ-SPH, DISPH, ...)

77

Smoothed particle hydrodynamics

• Mainly used for solution of hydrodynamical equations

• Lagrangian method!

• Grid-less, no computational domain

−→ suitable for problems where the domain is not a priori known

• Automatic adapative spatial resolution

• Easily extensible (not fixed to a particular problem)

• Simple to implement

• Generally slower compared to grid-based methods (grid has fixed

topology, particle neighbors change over time)

• Always gives some result (no convergence issues), although it may

not be correct (particle interpenetration, artificial clumping, unphysical mixing

of fluids, etc.)

• Comes in a lot of “flavors” (SSPH, CSPH, ASPH, GSPH, XSPH,

δ-SPH, DISPH, ...)

77

Smoothed particle hydrodynamics

• Mainly used for solution of hydrodynamical equations

• Lagrangian method!

• Grid-less, no computational domain

−→ suitable for problems where the domain is not a priori known

• Automatic adapative spatial resolution

• Easily extensible (not fixed to a particular problem)

• Simple to implement

• Generally slower compared to grid-based methods (grid has fixed

topology, particle neighbors change over time)

• Always gives some result (no convergence issues), although it may

not be correct (particle interpenetration, artificial clumping, unphysical mixing

of fluids, etc.)

• Comes in a lot of “flavors” (SSPH, CSPH, ASPH, GSPH, XSPH,

δ-SPH, DISPH, ...)

77

Smoothed particle hydrodynamics

• Mainly used for solution of hydrodynamical equations

• Lagrangian method!

• Grid-less, no computational domain

−→ suitable for problems where the domain is not a priori known

• Automatic adapative spatial resolution

• Easily extensible (not fixed to a particular problem)

• Simple to implement

• Generally slower compared to grid-based methods (grid has fixed

topology, particle neighbors change over time)

• Always gives some result (no convergence issues), although it may

not be correct (particle interpenetration, artificial clumping, unphysical mixing

of fluids, etc.)

• Comes in a lot of “flavors” (SSPH, CSPH, ASPH, GSPH, XSPH,

δ-SPH, DISPH, ...)

77

Smoothed particle hydrodynamics

• Mainly used for solution of hydrodynamical equations

• Lagrangian method!

• Grid-less, no computational domain

−→ suitable for problems where the domain is not a priori known

• Automatic adapative spatial resolution

• Easily extensible (not fixed to a particular problem)

• Simple to implement

• Generally slower compared to grid-based methods (grid has fixed

topology, particle neighbors change over time)

• Always gives some result (no convergence issues), although it may

not be correct (particle interpenetration, artificial clumping, unphysical mixing

of fluids, etc.)

• Comes in a lot of “flavors” (SSPH, CSPH, ASPH, GSPH, XSPH,

δ-SPH, DISPH, ...)

77

Motivation

Asteroid impact — fragments may end up “anywhere”

78

Motivation

Hydraulic erosion — let the water carve the terrain

79

Motivation - tracers

• How does the end state relate to the initial configuration?

• Lagrangian methods: initial configuration is the reference, particles

are not created nor destroyed, their “names” are fixed during

simulation

• Eulerian methods: add tracer particles

80

Tracers

81

Tracers

82

Continuum mechanics: crash course

Eulerian description

• Describes velocities (and other quantities) at fixed points in space

• “Person standing in river measuring the velocity of the water”

• Mapping function using immediate configuration as reference:

r 0 = ξ−1(r(t), t)

• Material derivative:

dv
dt

=
∂v
∂t

+ (v · ∇)v

83

Continuum mechanics: crash course

Eulerian description

• Describes velocities (and other quantities) at fixed points in space

• “Person standing in river measuring the velocity of the water”

• Mapping function using immediate configuration as reference:

r 0 = ξ−1(r(t), t)

• Material derivative:

dv
dt

=
∂v
∂t

+ (v · ∇)v

83

Continuum mechanics: crash course

Lagrangian description

• Describes velocities of pieces of continuum

• “Person on a boat measuring the velocity with GPS”

• Mapping function using initial configuration as reference:

r(t) = ξ(r 0, t)

• No need for the convective derivative:

dv
dt

= f

84

Continuum mechanics: crash course

Lagrangian description

• Describes velocities of pieces of continuum

• “Person on a boat measuring the velocity with GPS”

• Mapping function using initial configuration as reference:

r(t) = ξ(r 0, t)

• No need for the convective derivative:

dv
dt

= f

84

Continuum mechanics: crash course

Set of equations:

• Continuity equation — convervation of mass:

dρ

dt
+ ρ∇ · v = 0

• Equation of motion — Euler equation:

dv
dt

= −1

ρ
∇P

−→ describes adiabatic inviscid fluid

• 5 variables, 4 equations −→ Equation of state (EoS):

P = P(ρ)

for example:

P = A

(
ρ

ρ0
− 1

)

85

Continuum mechanics: crash course

Set of equations:

• Continuity equation — convervation of mass:

dρ

dt
+ ρ∇ · v = 0

• Equation of motion — Euler equation:

dv
dt

= −1

ρ
∇P

−→ describes adiabatic inviscid fluid

• 5 variables, 4 equations −→ Equation of state (EoS):

P = P(ρ)

for example:

P = A

(
ρ

ρ0
− 1

)

85

Continuum mechanics: crash course

Set of equations:

• Continuity equation — convervation of mass:

dρ

dt
+ ρ∇ · v = 0

• Equation of motion — Euler equation:

dv
dt

= −1

ρ
∇P

−→ describes adiabatic inviscid fluid

• 5 variables, 4 equations −→ Equation of state (EoS):

P = P(ρ)

for example:

P = A

(
ρ

ρ0
− 1

)
85

Continuum mechanics: crash course

• EoS is usually has two independent parameters

• Function of specific internal energy u:

P = P(ρ, u)

for example ideal gas:

P = (γ − 1)uρ

• Thus we need to add energy equation:

du

dt
= −P

ρ
∇ · v

86

Continuum mechanics: crash course

• Function of specific entropy s:

P = K (s)ργ

• Equation for the entropy function K (s):

dK

dt
=
γ − 1

ργ−1

(
du

dt
− P

ρ2

dρ

dt

)
where

u =
K

γ − 1
ργ−1

87

Continuum mechanics: crash course

• Viscosity / material strength

• Navier-Stokes equation

dv
dt

=
1

ρ
∇ · σ

where

σ = −PI + S

• Constitutive equation — linearly depend on ∇v :

σ = λ(∇ · v)I + 2µε̇

where λ and µ are Lamé parameters

88

Estimate probability from samples

• Motivation: We have set of samples from (unknown) probability

distribition P

• Goal is to estimate P

• Approach 1: construct a histogram

89

Estimate probability from samples

• Motivation: We have set of samples from (unknown) probability

distribition P

• Goal is to estimate P

• Approach 1: construct a histogram

89

Estimate probability from samples

• Approach 2: estimate P as a sum of kernel functions placed at

sample points, i.e.:

P(x) =
1

nh

n∑
i=1

K

(
x − xi
h

)

90

Kernel density estimate

• Called kernel density estimate (Parzen window)

• Provides continuous (even C∞) function

• Bandwidth h — controlls precision vs. resolution

(similarly to the bin size in histogram)

• Used frequently in statistics, signal processing, computer vision, ...

91

SPH — basic idea

• Continuum representent by a set of particles

• Each particle has a fixed mass mi

• Density — similar to kernel density estimate:

ρ(r) =
∑
i

miW (r − r i , hi)

where W is the kernel function and h is the smoothing length

• Smoothing kernel W (r , h) — known function, represents a density

profile of particles

• Smoothing length hi — unit of spatial resolution, generally different

for each particle

92

SPH — basic idea

• Continuum representent by a set of particles

• Each particle has a fixed mass mi

• Density — similar to kernel density estimate:

ρ(r) =
∑
i

miW (r − r i , hi)

where W is the kernel function and h is the smoothing length

• Smoothing kernel W (r , h) — known function, represents a density

profile of particles

• Smoothing length hi — unit of spatial resolution, generally different

for each particle

92

SPH — basic idea

• Continuum representent by a set of particles

• Each particle has a fixed mass mi

• Density — similar to kernel density estimate:

ρ(r) =
∑
i

miW (r − r i , hi)

where W is the kernel function and h is the smoothing length

• Smoothing kernel W (r , h) — known function, represents a density

profile of particles

• Smoothing length hi — unit of spatial resolution, generally different

for each particle

92

SPH — basic idea

• Continuum representent by a set of particles

• Each particle has a fixed mass mi

• Density — similar to kernel density estimate:

ρ(r) =
∑
i

miW (r − r i , hi)

where W is the kernel function and h is the smoothing length

• Smoothing kernel W (r , h) — known function, represents a density

profile of particles

• Smoothing length hi — unit of spatial resolution, generally different

for each particle

92

Smoothing kernel

93

Kernel properties

• Continuous & smooth

• Monotonic — density decreases with increasing distance

• Non-negative — to avoid non-physical negative densities

• Normalization

M =

∫
ρ(r) dV =

∑
i

mi

∫
W (r − r i) dV

=
∑
i

mi

thus: ∫
W (r) dV = 1

• Isotropy

W (r) = w(‖r‖)

94

Kernel properties

• Continuous & smooth

• Monotonic — density decreases with increasing distance

• Non-negative — to avoid non-physical negative densities

• Normalization

M =

∫
ρ(r) dV =

∑
i

mi

∫
W (r − r i) dV

=
∑
i

mi

thus: ∫
W (r) dV = 1

• Isotropy

W (r) = w(‖r‖)

94

Kernel properties

• Continuous & smooth

• Monotonic — density decreases with increasing distance

• Non-negative — to avoid non-physical negative densities

• Normalization

M =

∫
ρ(r) dV =

∑
i

mi

∫
W (r − r i) dV

=
∑
i

mi

thus: ∫
W (r) dV = 1

• Isotropy

W (r) = w(‖r‖)

94

SPH kernels

• Kernel is an approximation of δ-function:

lim
h→0

W (r , h) = δ(r)

• Usually finite support — performance reasons

• Example: Gaussian, Wendland functions

• Typically piecewise polynomial:

W (r , h) =
σ

h3


1
4 (2− q)3 − (1− q)3 , 0 ≤ q < 1 ,
1
4 (2− q)3 , 1 ≤ q < 2 ,

0 q ≥ 2 ,

(1)

where σ is normalization constant

95

SPH kernels

• Kernel is an approximation of δ-function:

lim
h→0

W (r , h) = δ(r)

• Usually finite support — performance reasons

• Example: Gaussian, Wendland functions

• Typically piecewise polynomial:

W (r , h) =
σ

h3


1
4 (2− q)3 − (1− q)3 , 0 ≤ q < 1 ,
1
4 (2− q)3 , 1 ≤ q < 2 ,

0 q ≥ 2 ,

(1)

where σ is normalization constant

95

SPH kernels

• Kernel is an approximation of δ-function:

lim
h→0

W (r , h) = δ(r)

• Usually finite support — performance reasons

• Example: Gaussian, Wendland functions

• Typically piecewise polynomial:

W (r , h) =
σ

h3


1
4 (2− q)3 − (1− q)3 , 0 ≤ q < 1 ,
1
4 (2− q)3 , 1 ≤ q < 2 ,

0 q ≥ 2 ,

(1)

where σ is normalization constant

95

SPH kernels

96

SPH interpolation

• Start off with an identity:

A(r) =

∫
A(r ′)δ(r − r ′) dV ′

• Discretization −→ replace δ with W :

A(r) '
∫

A(r ′)W (r − r ′, h) dV ′

• Replace the volume element dV with mi

ρi
— convert integral into a

finite sum:

A(r) '
∑
i

Ai
mi

ρi
W (r − r ′, hi)

97

SPH interpolation

• Start off with an identity:

A(r) =

∫
A(r ′)δ(r − r ′) dV ′

• Discretization −→ replace δ with W :

A(r) '
∫

A(r ′)W (r − r ′, h) dV ′

• Replace the volume element dV with mi

ρi
— convert integral into a

finite sum:

A(r) '
∑
i

Ai
mi

ρi
W (r − r ′, hi)

97

SPH interpolation

• Start off with an identity:

A(r) =

∫
A(r ′)δ(r − r ′) dV ′

• Discretization −→ replace δ with W :

A(r) '
∫

A(r ′)W (r − r ′, h) dV ′

• Replace the volume element dV with mi

ρi
— convert integral into a

finite sum:

A(r) '
∑
i

Ai
mi

ρi
W (r − r ′, hi)

97

SPH interpolation

• Similarly discretize spatial derivatives:

∇A(r) =
∑
i

Ai
mi

ρi
∇W (r − r i , hi)

∇ · A(r) =
∑
i

Ai
mi

ρi
· ∇W (r − r i , hi)

∇× A(r) =
∑
i

Ai
mi

ρi
×∇W (r − r i , hi)

• Discretization error is of order O(h2)

• We can use this to discretize the equations:

dv i

dt
= − 1

ρi
∇Pi ' −

1

ρi

∑
j

mj

ρj
Pj∇W (r j − r i , hj)

98

SPH interpolation

• Similarly discretize spatial derivatives:

∇A(r) =
∑
i

Ai
mi

ρi
∇W (r − r i , hi)

∇ · A(r) =
∑
i

Ai
mi

ρi
· ∇W (r − r i , hi)

∇× A(r) =
∑
i

Ai
mi

ρi
×∇W (r − r i , hi)

• Discretization error is of order O(h2)

• We can use this to discretize the equations:

dv i

dt
= − 1

ρi
∇Pi ' −

1

ρi

∑
j

mj

ρj
Pj∇W (r j − r i , hj)

98

Constant functions in SPH

• Näıve discretization has suboptimal properties

• Problem 1: Constant functions are no longer contant after

discretization

∇C = C
∑
j

mj

ρj
∇Wij 6= 0

• Fix: subtract “gradient of 1”

∇A = ∇A− A∇1 =
∑
j

mj

ρj
A∇Wij − A

∑
j

mj

ρj
∇Wij = 0

• Leads to discretization

∇Ai −→
∑
j

mj

ρj
(Aj − Ai)∇Wij

99

Constant functions in SPH

• Näıve discretization has suboptimal properties

• Problem 1: Constant functions are no longer contant after

discretization

∇C = C
∑
j

mj

ρj
∇Wij 6= 0

• Fix: subtract “gradient of 1”

∇A = ∇A− A∇1 =
∑
j

mj

ρj
A∇Wij − A

∑
j

mj

ρj
∇Wij = 0

• Leads to discretization

∇Ai −→
∑
j

mj

ρj
(Aj − Ai)∇Wij

99

Constant functions in SPH

• Näıve discretization has suboptimal properties

• Problem 1: Constant functions are no longer contant after

discretization

∇C = C
∑
j

mj

ρj
∇Wij 6= 0

• Fix: subtract “gradient of 1”

∇A = ∇A− A∇1 =
∑
j

mj

ρj
A∇Wij − A

∑
j

mj

ρj
∇Wij = 0

• Leads to discretization

∇Ai −→
∑
j

mj

ρj
(Aj − Ai)∇Wij

99

Linear function in SPH

• Can be improved further — linear functions still linear after

discretization

• Instead of subtracting a constant value, we multiply the kernel by a

correction tensor:

C i =

∑
j

mj

ρj
(r j − r i)⊗∇Wij

−1

• Leads to discretization:

∇Ai −→
∑
j

mj

ρj
(Aj − Ai)C∇Wij

• More precise at a cost of higher overhead (matrix inversion for each

particle)

100

SPH discretizations

• Can we simply replace gradient with arbitrary discretization?

−→ YES

• SPH has a lot of different gradients

• discretization error is always O(h2)

• So which one is the “correct” one?

• Problem dependent ...

101

Conservation of integrals

• Problem 2: Discretization does not conserve linear momentum,

angular momentum, energy, ...

mi
dv i

dt
6= −mj

dv j

dt

• Derive conservative equations — use Lagrange’s equations:

∂L

∂r i
− d

dt

(
∂L

∂v i

)
= 0

102

Consistent SPH equations

• Lagrangian L = T − V

L =
∑
j

(
1

2
mjv 2

j −mjuj

)
where uj is specific internal energy of j-th particle

• Internal energy — first law of thermodynamics:

dU = TdS − pdV

or in intensive quantities:

du = Tds +
p

ρ2
dρ

103

Consistent SPH equations

• Internal energy does not depend on velocity:

d

dt

(
∂L

∂v i

)
=

d

dt

∑
j

1

2
mj

∂v 2
j

∂v i

 = mi
dv i

dt

• First term — gradient of internal energy u:

∂L

∂r i
= −

∑
j

mj
∂u(ρj , sj)

∂r i

∂u(ρj , sj)

∂r i
= Ti

dsi
dr i

+
pi
ρ2
i

dρ

dr i
• Assuming isentropic process ds = 0

104

Consistent SPH equations

• Gradient of density with respect to position of i-th particle:

∂ρj
∂r i

=
∑
k

mk
∂Wjk

∂r i
=
∑
k

mk(δji − δki)∇Wjk

• Equation of motion:

mi
dv i

dt
= −

∑
j

mimj

(
Pi

ρ2
i

+
Pj

ρ2
j

)
∇Wij

• Energy equation:

dui
dt

=
Pi

ρ2
i

∑
j

mj(v i − v j) · ∇Wij

• Continuity equation:

dρi
dt

=
∑
j

mj(v i − v j) · ∇Wij

105

SPH equations — notes

• Depends only on the difference of velocities v i − v j

−→ Galilean invariance

• If constant velocity (v i = v j) −→ density and energy constant

• Depends on the sum of (scaled) pressures Pi and Pj

−→ generally non-zero acceleration even if P = const.

• Provides numerical repulsive force — regularization

106

SPH equations — notes

• Depends only on the difference of velocities v i − v j

−→ Galilean invariance

• If constant velocity (v i = v j) −→ density and energy constant

• Depends on the sum of (scaled) pressures Pi and Pj

−→ generally non-zero acceleration even if P = const.

• Provides numerical repulsive force — regularization

106

SPH equations — notes

• Depends only on the difference of velocities v i − v j

−→ Galilean invariance

• If constant velocity (v i = v j) −→ density and energy constant

• Depends on the sum of (scaled) pressures Pi and Pj

−→ generally non-zero acceleration even if P = const.

• Provides numerical repulsive force — regularization

106

SPH equations — notes

• Conserves total linear momentum

• Conserves total angular momentum if no viscous forces are used

• Conserves total energy

• With viscous forces: angular momentum conservation can be

improved by adding the correction tensor:

mi
dv i

dt
= −

∑
j

mimj

(
Pi

ρ2
i

+
Pj

ρ2
j

)
C i∇Wij

107

Smoothing lengths h

• Balances locality and discretization error

• Large smoothing lengths −→ lot of neighbors, precise interpolation

BUT need more particle for the same spatial resolution

• Smaller smoothing lengths −→ fewer neighbors, faster, less precise,

noisy

• Can we get arbitrarily precise interpolation by increasing number of

neighbors?

−→ unfortunately no

• Pairing instability — when particle density exceeds critical value,

numerical repulsive forces become attractive

• Leads to particles collapsing on top of each other — effectively

losing half the spatial resolution

108

Smoothing lengths h

• Balances locality and discretization error

• Large smoothing lengths −→ lot of neighbors, precise interpolation

BUT need more particle for the same spatial resolution

• Smaller smoothing lengths −→ fewer neighbors, faster, less precise,

noisy

• Can we get arbitrarily precise interpolation by increasing number of

neighbors?

−→ unfortunately no

• Pairing instability — when particle density exceeds critical value,

numerical repulsive forces become attractive

• Leads to particles collapsing on top of each other — effectively

losing half the spatial resolution

108

Smoothing lengths h

• Balances locality and discretization error

• Large smoothing lengths −→ lot of neighbors, precise interpolation

BUT need more particle for the same spatial resolution

• Smaller smoothing lengths −→ fewer neighbors, faster, less precise,

noisy

• Can we get arbitrarily precise interpolation by increasing number of

neighbors?

−→ unfortunately no

• Pairing instability — when particle density exceeds critical value,

numerical repulsive forces become attractive

• Leads to particles collapsing on top of each other — effectively

losing half the spatial resolution

108

Smoothing lengths h

• Balances locality and discretization error

• Large smoothing lengths −→ lot of neighbors, precise interpolation

BUT need more particle for the same spatial resolution

• Smaller smoothing lengths −→ fewer neighbors, faster, less precise,

noisy

• Can we get arbitrarily precise interpolation by increasing number of

neighbors?

−→ unfortunately no

• Pairing instability — when particle density exceeds critical value,

numerical repulsive forces become attractive

• Leads to particles collapsing on top of each other — effectively

losing half the spatial resolution

108

Adaptive spatial resolution

• Desirable to have large h in places with few particles, small h in

places with a lot of particles

• Automatically balance h — “continuity equation”

dhi
dt

=
hi
3
∇ · v i

• Major strength of SPH — adaptive mesh refinement is order of

magnitude more diffucilt to implement

109

Artificial viscosity

• SPH continuum description does not handle discontinuities

• Shock waves, material interfaces, ...

• Particle interpenetration — velocity field becomes multivalued

• Solution is to smooth the discontinuity over several hs

• Add artificial viscosity:

Πi =
∑
j

mj

−αc̄ijµij + βµ2
ij

ρ̄ij
∇Wij

where µij is an approximation of ∇ · v :

µij =
h(v i − v j) · (r i − r j)
‖r i − r j‖2 + εh2

110

Artificial viscosity

• SPH continuum description does not handle discontinuities

• Shock waves, material interfaces, ...

• Particle interpenetration — velocity field becomes multivalued

• Solution is to smooth the discontinuity over several hs

• Add artificial viscosity:

Πi =
∑
j

mj

−αc̄ijµij + βµ2
ij

ρ̄ij
∇Wij

where µij is an approximation of ∇ · v :

µij =
h(v i − v j) · (r i − r j)
‖r i − r j‖2 + εh2

110

SPH algorithm

For each time step:

1. Compute P and cs from EoS

2. Update smoothing lengths hi , determine the search radius

3. Find neighbors of each particle

4. Loop over neighbors, compute sum ∇P, ∇ · S , ∇ · v , ...

5. Compute LHS: ρ̇, v̇ , u̇, ...

6. Integrate using predictor-corrector, RK4, ...

7. Using LHSs, determine new time step

111

SPH algorithm

The most basic SPH code:

f o r (f l o a t t = 0 ; t < d u r a t i o n ; t += dt) {
// update p r e s s u r e v a l u e s u s i n g the equa t i on o f s t a t e

f o r (i n t i = 0 ; i < n u m p a r t i c l e s ; i ++) {
p [i] = eos (rho [i]) ;

dv [i] = d i v v [i] = drho [i] = 0 ;

}
// compute d e r i v a t i v e s by summing up ne i ghbo r v a l u e s

f o r (i n t i = 0 ; i < n u m p a r t i c l e s ; i ++) {
f o r (i n t j : n e i g h b o r s (i)) {

V e c t o r grad = k e r n e l . g r a d i e n t (r [i] − r [j] , 0 . 5∗ (h [i] + h [j])) ;

d i v v [i] += m[j] / rho [j] ∗ (v [j] − v [i]) ∗ grad ;

dv [i] += m[j] / rho [j] ∗ (p [i] / rho [i] + p [j] / rho [j]) ∗ grad ;

}
drho [i] = −rho [i] ∗ d i v v [i] ;

}
// i n t e g r a t e time−dependent q u a n t i t i e s

f o r (i n t i = 0 ; i < n u m p a r t i c l e s ; i ++) {
r [i] += v [i] ∗ dt ;

v [i] += dv [i] ∗ dt ;

rho [i] += drho [i] ∗ dt ;

}
}

112

Density evolution

Density is now given by two different equations

• Direct summation:

ρi =
∑
j

mjWij

• Continuity equation:

dρi
dt

=
∑
j

mj(v i − v j) · ∇Wij

• We can use either one

113

Density evolution

Density is now given by two different equations

• Direct summation:

ρi =
∑
j

mjWij

• Continuity equation:

dρi
dt

=
∑
j

mj(v i − v j) · ∇Wij

• We can use either one

113

Density evolution

Pros & cons:

• Direct summation requires two loops over all particles –

first to update the density, second to compute all derivatives

• Direct summation has issues on surfaces and density interfaces

(artificially low density)

• Continuity equation is less robust (prone to unphysical

high-frequency oscillations)

• Direct summation enforces smoothing of density field

114

Density evolution

Pros & cons:

• Direct summation requires two loops over all particles –

first to update the density, second to compute all derivatives

• Direct summation has issues on surfaces and density interfaces

(artificially low density)

• Continuity equation is less robust (prone to unphysical

high-frequency oscillations)

• Direct summation enforces smoothing of density field

114

Density evolution

Pros & cons:

• Direct summation requires two loops over all particles –

first to update the density, second to compute all derivatives

• Direct summation has issues on surfaces and density interfaces

(artificially low density)

• Continuity equation is less robust (prone to unphysical

high-frequency oscillations)

• Direct summation enforces smoothing of density field

114

Density evolution

Pros & cons:

• Direct summation requires two loops over all particles –

first to update the density, second to compute all derivatives

• Direct summation has issues on surfaces and density interfaces

(artificially low density)

• Continuity equation is less robust (prone to unphysical

high-frequency oscillations)

• Direct summation enforces smoothing of density field

114

Gradient of smoothing length

• So far, we assumed h = const when deriving the SPH equations

• Particles have generally different hs — ∇W will contain terms

related to the smoothing length gradient

• Grad-h terms:

Ωi = 1− ∂hi
∂ρi

∑
j

mj
∂Wij(hi)

∂hi

• Set of equations is then modified as:

dρi
dt

=
1

Ωi

∑
j

mj(v i − v j) · ∇Wij(hi)

dv i

dt
= −

∑
j

mj

(
Pi

Ωiρ2
i

∇Wij(hi) +
Pj

Ωjρ2
j

∇Wij(hj)

)
du

dt
=

Pi

Ωiρ2
i

∑
j

mj(v i − v j) · ∇Wij(hi)

115

Gradient of smoothing length

• So far, we assumed h = const when deriving the SPH equations

• Particles have generally different hs — ∇W will contain terms

related to the smoothing length gradient

• Grad-h terms:

Ωi = 1− ∂hi
∂ρi

∑
j

mj
∂Wij(hi)

∂hi

• Set of equations is then modified as:

dρi
dt

=
1

Ωi

∑
j

mj(v i − v j) · ∇Wij(hi)

dv i

dt
= −

∑
j

mj

(
Pi

Ωiρ2
i

∇Wij(hi) +
Pj

Ωjρ2
j

∇Wij(hj)

)
du

dt
=

Pi

Ωiρ2
i

∑
j

mj(v i − v j) · ∇Wij(hi)

115

Gradient of smoothing length

• So far, we assumed h = const when deriving the SPH equations

• Particles have generally different hs — ∇W will contain terms

related to the smoothing length gradient

• Grad-h terms:

Ωi = 1− ∂hi
∂ρi

∑
j

mj
∂Wij(hi)

∂hi

• Set of equations is then modified as:

dρi
dt

=
1

Ωi

∑
j

mj(v i − v j) · ∇Wij(hi)

dv i

dt
= −

∑
j

mj

(
Pi

Ωiρ2
i

∇Wij(hi) +
Pj

Ωjρ2
j

∇Wij(hj)

)
du

dt
=

Pi

Ωiρ2
i

∑
j

mj(v i − v j) · ∇Wij(hi)

115

Gradient of smoothing length

• Ensure momentum conservation — action and reaction principle

• Generally resolved by kernel symmetrization

• Symmetrize smoothing lenghts:

Wij −→W (r i − r j ,
hi + hj

2
)

• Symmetrize kernels:

Wij −→
W (r i − r j , hi) + W (r i − r j , hj)

2

116

Gradient of smoothing length

• Ensure momentum conservation — action and reaction principle

• Generally resolved by kernel symmetrization

• Symmetrize smoothing lenghts:

Wij −→W (r i − r j ,
hi + hj

2
)

• Symmetrize kernels:

Wij −→
W (r i − r j , hi) + W (r i − r j , hj)

2

116

Boundary conditions

• Difficult to realize arbitrary boundary condition

• “Implicit” BCs — ρ(r) = 0 (vacuum BC)

• Alternatively, we can use periodic boundary conditions

• Reflecting boundaries?

• Create physical domain using particles — e.g. solid boundary

interacting with fluid particles

• Or use ghost particles

−→ create dummy particles symmetrically along the boundary

117

Boundary conditions

• Difficult to realize arbitrary boundary condition

• “Implicit” BCs — ρ(r) = 0 (vacuum BC)

• Alternatively, we can use periodic boundary conditions

• Reflecting boundaries?

• Create physical domain using particles — e.g. solid boundary

interacting with fluid particles

• Or use ghost particles

−→ create dummy particles symmetrically along the boundary

117

Boundary conditions

• Difficult to realize arbitrary boundary condition

• “Implicit” BCs — ρ(r) = 0 (vacuum BC)

• Alternatively, we can use periodic boundary conditions

• Reflecting boundaries?

• Create physical domain using particles — e.g. solid boundary

interacting with fluid particles

• Or use ghost particles

−→ create dummy particles symmetrically along the boundary

117

Ghost particles

118

Periodic boundary

119

Initial conditions

• We need to generate particles

• Particle positions r , smoothing lengths h

+ other quantities (v , ρ, u, ...)

• If ρi = ρ0, then

mi =
ρ0V

N

hi =

(
V

N

) 1
3

• Particle distribution?

120

Close hexagonal packing

• Distribute the particles in a hexagonal grid

• Easy to set up

• Stable — energy minimum

• Uniform, no particle disorder

• Not isotropic — may create numerical clumping, ...

121

Halton sequence

• Distribute particles using quasi-random number sequence

• Halton — low-discrepancy sequence

• n-th number of the sequence is n written in binary representation,

inverted and written after the decimal point

1

2
,

1

4
,

3

4
,

1

8
,

5

8
,

3

8
,

7

8
,

1

16
,

9

16
, ...

• Multiple dimensions — use other base (prime), e.g.

1

3
,

2

3
,

1

9
,

4

9
,

7

9
,

2

9
,

5

9
,

8

9
,

1

27
, ...

• Worse interpolation — particle clumps

122

Blue noise distribution

• Relaxation-based sampling

• Initially distribute particles (quasi-)randomly

• Compute repulsive forces — move particles away from each other:

∆ri ∝
r i − r j
‖r i − r j‖3

• Repeat until convergence

• Particles (almost) uniformly distributed

• Isotropic!

• More difficult to implement (especially with arbitrary domain shapes)

123

Particle distributions

hexagonal grid cubic grid white noise

stratified Halton blue noise

124

Initial conditions

H
ex

ag
on

al
gr

id
Is

ot
ro

p
ic

d
is

tr
ib

u
ti

on

125

SPH symmetry

• All terms either symmetric or antisymmetric in particle indices

i and j
dv
dt
∝ pi
ρ2
i

+
pj
ρ2
j

du

dt
∝ vi − vj

etc.

• Code optimization — terms can be computed only once and added

into sums for particles i and j

• Cannot be used with the correction tensor C — need to be

computed before other derivatives, but all the sums are only partial

• Also more difficult to parallelize

126

SPH symmetry

• All terms either symmetric or antisymmetric in particle indices

i and j
dv
dt
∝ pi
ρ2
i

+
pj
ρ2
j

du

dt
∝ vi − vj

etc.

• Code optimization — terms can be computed only once and added

into sums for particles i and j

• Cannot be used with the correction tensor C — need to be

computed before other derivatives, but all the sums are only partial

• Also more difficult to parallelize

126

Parallelization

• Asymmetric solver — we accumulate to each particle independently

−→ embarrassingly parallel

#pragma omp p a r a l l e l f o r

or

tbb : : p a r a l l e l f o r (0 , n u m p a r t i c l e s , [] (i n t i) {

• Symmetric solver — we accumulate to both the particle and its

neighbors −→ parallelization more complex

• For example: using thread-local sums or domain decomposition

127

Finding neighbors

How to find neighbors of particle i?

• Check all particles — extremely inefficient (but correct, useful for tests)

• Look only in radius 2hi — do we find all of them?

NO!

Symmetrized kernel uses h =
hi+hj

2 , it could be nonzero for hj > hi !

• Look in radius 2hmax — again inefficient for big differences in h

Can we do better?

128

Finding neighbors

How to find neighbors of particle i?

• Check all particles — extremely inefficient (but correct, useful for tests)

• Look only in radius 2hi — do we find all of them?

NO!

Symmetrized kernel uses h =
hi+hj

2 , it could be nonzero for hj > hi !

• Look in radius 2hmax — again inefficient for big differences in h

Can we do better?

128

SPH symmetric solver

• Symmetric solver processes each pair i and j only once

• Trick: sort particles by their smoothing lengths h

• Since we know order of particles (in h), we can only look for

neighbors with lower rank

−→ each pair will be evaluated exactly once

−→ symmetrized length
hi+hj

2 will be always lower than hi

We will not miss any neighbors!

• Cannot be used for antisymmetric solver — we need to find all

neighbors :(

129

Second derivative in SPH

• Laplacian could be obtained using:

∇2Ai =
∑
j

mj

ρj
Aj∇2Wij

• Highly sensitive to particle disorder

• Instead, we use approximation:

∇2A(r) =

∫
2
A(r ′)− A(r)

‖r ′ − r‖
(r ′ − r) · ∇W (r − r ′)

• Discretization:

∇2Ai = −2
∑
j

mj

ρj
(Aj − Ai)

(r i − r j) · ∇Wij

‖r i − r j‖2

130

Second derivative in SPH

• Laplacian could be obtained using:

∇2Ai =
∑
j

mj

ρj
Aj∇2Wij

• Highly sensitive to particle disorder

• Instead, we use approximation:

∇2A(r) =

∫
2
A(r ′)− A(r)

‖r ′ − r‖
(r ′ − r) · ∇W (r − r ′)

• Discretization:

∇2Ai = −2
∑
j

mj

ρj
(Aj − Ai)

(r i − r j) · ∇Wij

‖r i − r j‖2

130

Linear consistency

• Discretization from Lagrangian: velocity gradient ∇v i is corrected by

constant

• Problem fixed only partially — now gradients of linear functions are

generally not constant −→ angular momentum not conserved

• Rotations misinterpreted as deformation

• We can still correct it at a cost of some computational overhead,

using the correction tensor C :

C i ≡

∑
j

mj

ρj
(r j − r i)⊗∇Wij

−1

• Then the velocity gradient is:

∇v i ≡
∑
j

mj

ρj
(v j − v i)C i · ∇Wij

131

Linear consistency

• Discretization from Lagrangian: velocity gradient ∇v i is corrected by

constant

• Problem fixed only partially — now gradients of linear functions are

generally not constant −→ angular momentum not conserved

• Rotations misinterpreted as deformation

• We can still correct it at a cost of some computational overhead,

using the correction tensor C :

C i ≡

∑
j

mj

ρj
(r j − r i)⊗∇Wij

−1

• Then the velocity gradient is:

∇v i ≡
∑
j

mj

ρj
(v j − v i)C i · ∇Wij

131

Linear consistency

Linear inconsistency can be neglected for short timescales, but it is

essential for long-term evolution!

132

Tensile instability

Standard SPH not stable for negative pressure. To solve it:

• Fixed neighborhood for each particle

dv i

dt
= −

∑
j

mj

(
Pi

ρ2
i

+
Pj

ρ2
j

)
∇W (r 0

i − r 0
j)

(Lagrangian SPH)

• Useful to simulate elastic deformations — allows for large

deformations without tensile instability

• Does not handle changes of topology

• Alternatively, add artificial stress ζαβ

133

Tensile instability

Standard SPH not stable for negative pressure. To solve it:

• Fixed neighborhood for each particle

dv i

dt
= −

∑
j

mj

(
Pi

ρ2
i

+
Pj

ρ2
j

)
∇W (r 0

i − r 0
j)

(Lagrangian SPH)

• Useful to simulate elastic deformations — allows for large

deformations without tensile instability

• Does not handle changes of topology

• Alternatively, add artificial stress ζαβ

133

Tensile instability

• Add extra term to equation of motion:

ζαβi =
∑
j

mjR
αβ
ij f nij

where fij = W (r i − r j)/W (∆p), ∆p is the initial particle spacing, n

is a fixed exponent

• Tensor R ij = R i + R j is specified using principal axes of σ as:

Ri = −ε σi
ρ2
i

if σi > 0

otherwise Ri = 0

134

Tensile instability

Standard SPH With artificial stress

135

Neighbor search

• Simple timestep is generally O(N2
part)

— impossibly slow for Npart > 1000

• BUT kernel W usually has compact support — Nneigh � Npart

• Requires efficient search of neighbors

• Build an acceleration structure at the beginning of each time step

−→ makes a single timestep O(Npart logNpart) or O(Npart)

136

Grid-based neighbor search

• Place particles into cells of a grid

• We can compute cell indices from the particle positions in O(1) —

potential neighbors are in neighboring cells, depending on hi

• Inefficient if particle concentration varies significantly

(=useless for impact simulations)

• SPH no longer a “gridless method” :(

137

Grid-based neighbor search

138

Tree-based neighbor search

• Cluster particles hierarchically into a tree (octree, K-d tree, ...)

• Neighbor lookup in O(logN)

• Tree might be also used for gravity evaluation — “2 in 1”

139

Surface handling in SPH

• SPH particles are volume elements

• Quantities continuously approach zero, where is the surface?

• We define the color field:

C (r) ≡
∑
j

mj

ρj
W (r − r j)

For N →∞, h→ 0, color field C = 1 for the body and C = 0 for

vacuum

• Then the surface of the asteroid is an isosurface C (r) = c0

• Construction of the surface: either convert to triangle mesh using

marching cubes or find the intersection with rays using raymarching

(depending on application)

140

Surface handling in SPH

• SPH particles are volume elements

• Quantities continuously approach zero, where is the surface?

• We define the color field:

C (r) ≡
∑
j

mj

ρj
W (r − r j)

For N →∞, h→ 0, color field C = 1 for the body and C = 0 for

vacuum

• Then the surface of the asteroid is an isosurface C (r) = c0

• Construction of the surface: either convert to triangle mesh using

marching cubes or find the intersection with rays using raymarching

(depending on application)

140

Surface forces

• SPH normally computes volumetric forces

• Surface forces quite tricky, e.g. surface tension

• Surface area minimization term

F surface
i = −

∑
j

γmi (ni − nj)

where ni is the surface normal:

ni = h
∑
j

mj

ρj
∇Wij

and γ ∼ 1

141

Surface tension

142

SPH codes

• OpenSPH — my humble contribution, mostly for impact modeling

and N-body simulations

• GADGET — cosmological SPH/N-body simulations

• Spheral — hydrodynamical & gravitational numerical modeling

• OpenFOAM — large CFD package for engineering applications

• DualSPHysics

• ... and much more

143

Homework

• Mail: sevecek@sirrah.troja.mff.cuni.cz

• Code examples: https://gitlab.com/sevecekp/pdesolvers

• SPH code: https://gitlab.com/sevecekp/sph

144

