
Problems

Select one of the two problems according to your choice and solve it. For the task, you are free to use any common
programming language which suits you at best. In case that you feel you need a piece of advice, do not hesitate to
contact me at dinnbier@sirrah.troja.mff.cuni.cz .

Problem I: Initial conditions for a star cluster

Write a piece of code which generates the Plummer model in virial equilibrium. The Plummer parameter of the
cluster is 0.5 pc and it contains 105 stars. All stars have the same mass of 1 M�. In the end check that you succeeded
in generating the initial conditions by plotting the radial dependence of density ρ and velocity dispersion σ alongside
the analytic values of these quantities for a Plummer model of this mass and radius.

Although all the necessary numerical tools were described at the lecture, I mention some literature below in case
that something was unclear during the lecture. You can find the numerical recipe for generating the Plummer model
in the Appendix of this paper https://ui.adsabs.harvard.edu/abs/1974A%26A....37..183A/abstract

I recommend you use the von Newmann rejection method for generating the velocity distribution of stars. Details
of this method are described in the book Numerical Recipes by Teukolsky et al. (it is in their Chapter ”Random
numbers”).

Problem II: Kozai-Lidov oscillations

One interesting phenomenon, which occurs in some of three body configurations is called Kozai-Lidov oscillations or
Kozai-Lidov cycles. This typically occurs in stable configurations where an inner binary is orbited by a third body.
For such a configuration to be stable, the semi-major axis of the third (outer) body should be at least 3 to 4 times
larger than the semi-major axis of the inner binary. The inner binary also should have an appropriate choice of
eccentricity and inclination (the inclination is calculated relatively to the orbit of the third body). The perturbing
force of the outer body acting on the inner binary then causes periodic oscillations of the eccentricity and inclination
of the third body. These oscillations occur on a time scale substantially longer than the orbital time-scale of the orbit
of the third body. When the inclination reaches its maximum, the eccentricity is at its minimum (panel a in Fig. 1),
and when inclination is at its minimum, the eccentricity reaches its maximum (panel b in Fig. 1).

Figure 1: Cartoon illustrating the Kozai-Lidov oscillations. The inner
binary is represented by the yellow and green stars (the green one is
the test body), the outer (third) body is shown as the red star. Kozai-
Lidov oscillations occur in the inner binary. Figure a): The inner
binary is substantially inclined relative to the orbit of the outer body,
but its eccentricity is small. Figure b): The inclination of the inner
binary is smaller, but its orbit became eccentric.

The increase of eccentricity during the
cycle means that the pericentre distance of
the inner binary shrinks. Consequently, this
opens the possibility of some interaction be-
tween the two bodies depending on their na-
ture. For example, if the inner binary are
black holes, the shrinkage of their pericentre
distance causes gravitational radiation to be
more efficient further dragging these bodies
closer together, which can ultimately result
in their coalescence. Thus, the Kozai-Lidov
mechanism can drastically reduce time-scale
for coalescence between two black holes. Less
exotic systems subjected to the same mech-
anism are hot Jupiters (if perturbed by an-
other more distant planet or star), which or-
bit other stars, and triple or multiple stellar
systems.

Your task is to write a second-order leap-
frog integrator which can handle three mu-
tually interacting bodies 1 . I recommend
using kick-drift-kick flavour of the integrator.
Then initialise a three body problem with the
following initial conditions: Consider a star
of mass of 1 M�, which is at the rest and at
the centre of the system. There is an M dwarf

of mass 0.1 M� orbiting the 1 M� star on a circular orbit at a distance of 6 AU. There is a test particle of mass 1
gram orbiting the 1 M� star at a distance of 1 AU. The orbit of the test particle is initially mildly eccentric (ε = 0.1)

1If you look up the equations for the leap-frog integrator from the textbook Binney & Tremaine 2007, please note that there is a mistake
in their equations (3.166a) and (3.166b). For the correct form of the equation, take a look at their errata, or at the slides from my talk.
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and highly inclined (i = 80◦) relative to the orbit of the M dwarf. Integrate the trajectories of the three bodies for
several thousands orbital times of the inner body, and plot the time dependence of the following quantities:

1. Check the conservation of the mechanical energy in the system (i.e. the sum of the potential and kinetic energy)
by plotting the time dependence of the relative energy error.

2. What is the maximum relative energy error in your calculations? Does the error systematically increase with
time?

3. The eccentricity of the inner binary 2

4. Inclination i of the orbit of the test particle (relative to the orbital plane of the M dwarf).

5. What is the period of the oscillation of ε or i?

2Useful formula: The semi-major axis a of the inner binary can be calculated from the energy conservation, i.e.
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where m1, m2 is the mass of the components forming the inner binary, v their relative velocity, r their relative distance, and G the
gravitational constant. Than the eccentricity ε can be calculated from the following formula
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where r and ṙ is the relative distance and velocity between the two stars. Obviously, r = |r| and v = |ṙ|.
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