Basics of observations and data reduction: imaging and photometry

Giacomo Beccari European Southern Observatory (ESO) gbeccari@eso.org imaging and photometry?

IMAGE

a visible impression obtained by a camera, telescope, microscope, or other device, or displayed on a computer or video screen

PHOTOMETRY measuring the intensity of light by counting photons

imaging

photometry

B-V

RAW DATA REDUCED DATA PHOT.CAT.

Part 1:

-RAW DATA-

The ingredients:

0. <u>Scientific Idea</u>1. A telescope2. An instrument

1. Telescopes

What makes a perfect imaging system in astronomy ?

What makes a perfect imaging system in astronomy ?

In addition to diffraction, aberrations in the optical system, the Earth's atmosphere, and scattered light contribute to the PSF.

CLEAR IMAGE

Atmospheric turbolences: Adaptive Optics

ATMOSPHERE (0.6-0.8 arcsec)

TELESCOPE (<<0.1 arcsec)

Omega Centauri

MAD T_{exp}[Ks]: 600s FWHM: 100mas K~20.5 DIMM: 0.69"

1 arcmin

1990 – Hubble Space Telescope

"Houston, we have a problem..." WHAT HAPPENED?

The primary mirror was PERFECTLY polished but was built with WRONG shape!

"Houston, we have a problem..." WHAT HAPPENED?

The primary

ut was built

Hubble's servicing mission, December 1993

Mechanics in the Space

"The Hubble problems is solved!"

James Webb Space Telescope (JWST) Launch: 22 December 2021 07:20 EST

James Webb Space Telescope (JWST) Launch: 22 December 2021 07:20 EST

https://jwst.nasa.gov/content/about/launch.html

James Webb Space Telescope (JWST) Launch: 22 December 2021 07:20 EST (13:30 CET)

Credit: NASA's Goddard Space Flight Center see also https://svs.gsfc.nasa.gov/20339

MAD [Ks] (0.028"/px) DIMM: 0.69" FWHM: 100mas – T_{exp}: 600s

HST/ACS [F435W] (0.050"/px) FWHM: 100mas – T_{exp}: 340s

Electromagnetic radiation

Multi-Wavelength

Image Credit: ESA/NASA/Felix Mirabel

Particle

Credit: Moravian Instruments

Electromagnetic radiation

Particle

Credit: Moravian Instruments

Charge Coupled Device (CCD)

columns

rows

Array of pixels The Buckets

Rain Drops = Photons Buckets = Pixels Water = Charge

Saturation = Max. capac. Dynamic range = tot. capac. The most striking characteristic of CCD is the fact that the digital counts LINEARLY INCREASES with the exposure CCDs are LINEAR

$$T_{exp} = 1 \text{ sec}$$

The most striking characteristic of CCD is the fact that the digital counts LINEARLY INCREASES with the exposure CCDs are LINEAR

$$T_{exp}$$
= 10 sec
The most striking characteristic of CCD is the fact that the digital counts LINEARLY INCREASES with the exposure CCDs are LINEAR

$$T_{exp}$$
= 100 sec

CCD ARE (almost everywhere) LINEAR: digital counts increase linearly with exposure time

SATURATION: each pixel has a fixed capacity of accumating electric charge. When the electric well is filled the charge start to overflow into adjacent pixels producing the so-called BLOOMING effect.

CCD ARE (almost everywhere) LINEAR: digital counts increase linearly with exposure time

2D Image...or more?

· · · · · · · · · · · · · · · · · · ·	I			
0	5	5	5	0
5	20	50	20	5
5	50	100	50	5
5	20	50	20	5
0	5	5	5	0
				Х

3D Image (FITS Format)

The luminosity (magnitude) of a star is obtained by simply counting all the digital counts under the PSF

+1

MINUTES OF ARC 0

= 440 counts

Electromagnetic radiation

Multi-Wavelength

Image Credit: ESA/NASA/Felix Mirabel

FILTER: a screen, plate, or layer of a substance which <u>absorbs light</u> or other radiation or <u>selectively</u> absorbs some of its components

Figure 8.1 Response functions $S(\lambda)$ for filters of various photometric systems. The bottom panel shows the spectra (in arbitrary units) of Vega and the Sun (courtesy of L. Girardi)

Figure 8.2 Comparison of the energy fluxes (units of $\operatorname{erg} \operatorname{cm}^{-2} \operatorname{s}^{-1} \operatorname{hz}^{-1} \operatorname{ster}^{-1}$) emitted by two stars with the same solar chemical composition and solar gravity, and two different values of T_{eff} . The effective wavelength of some photometric filters is also marked

What we call MAGNITUDE is the convolution between the FILTER BANDPASS PROFILE and THE ENERGY DISTRIBUTION of a given object

hence we expect very different magnitudes

The differences are expected to depend on the spectrum shape (hence on temperature)..

Observational Strategies: Multi-band

Scientific Goal • Tune your filter to the science!!!

Observational Strategies: Multi-band

Far-UltraViolet (FUV)

Optical-Near InfraRed (NIŘ)

M2, Dalessandro et al. 09

2. Instruments

2.1 Scientific Goal 2.2 Choose the right instrument 2.3 Read the....Manual!!! gain read-out noise saturation pixel scale Field of View (FOV) geometric distortion Flat Fielding Illumination Correction

2. Instruments

2.1 Scientific Goal 2.2 Choose the right instrument 2.3 Read the....Manual!!! gain read-out noise Capabilities saturation Limits pixel scale **Known Problems** Field of View (FOV) geometric distortion Flat Fielding Illumination Correction

2.2 Choose the right instrument: The Exposure Time Calculator (ETC)

Input Parameters Input Flux Distribution Spatial Distribution Sky Conditions Instrument Setup Requested S/N

Output Parameters

. . .

. . .

Exposure Time Sky background value Detector saturation

2.3 The Manuals!!!

http://www.eso.org/sci/facilities/paranal/instruments.html

Paranal Facilities

Emergency Procedures

Call for Proposals

Paranal News

- Contact Information
- Paranal Telescopes
- **Paranal Instrumentation**
- CRIRES
- **FLAMES**
- FORS
- HAWK-I
- **KMOS**
- MUSE
- NACO
- SINFONI
- SPHERE
- UVES
- VIMOS
- VISIR
- **X-SHOOTER**
- **Visitor Focus**
- **VLTI AMBER**
- **VLTI PIONIER**
- **VLTI Visitor Instrument**
- VIRCAM @ VISTA
- OmegaCAM @ VST Mascot

Paranal Instrumentation

The currently offered Paranal telescopes and instruments and their location are listed in the following table

valid for Period 96, October 1, 2015 - March 31, 2016.

The links to the different instruments provide an overview of the respective instrument capabilites and the offered instrument modes. For details please refer to the Call for Proposals for Period 96.

Information on Paranal decommissioned instruments is available on a separate page.

Please refer to the Call for Proposals for Period 97 for Paranal telescopes and instruments offered in Period 97.

Telescope	Focus				
	Nasmyth A	Cassegrain	Nasmyth B	Interferometric	
UT1 (Antu)	NACO	FORS2	KMOS		
UT2 (Kueyen)	FLAMES	XSHOOTER	UVES	AMBER	
UT3 (Melipal)	SPHERE	VISIR	VIMOS	PIONIER	
UT4 (Yepun)	HAWK-I	SINFONI	MUSE		
AT1					
AT2				AMBER	
AT3				PIONIER	
AT4					
VISTA		VIRCAM			
VST		OmegaCAM			

http://www.eso.org/sci/facilities/paranal/instruments.html

Paranal Facilities	Derenel Instrumentation					
Emergency Procedures	Paranal Instrumentation					
Call for Proposals	The currently offered Paranal telescopes and instruments and their location are listed in the following table					
Paranal News	valid for Period 96, October 1, 2015 - March 31, 2016					
Contact Information						
Paranal Telescopes	I he links to the different instruments provide an overview of the respective instrument capabilities and the offered instrument modes. For details please refer to the Call for Proposals for Period 96					
Paranal Instrumentation						
CRIRES	Information on Paranal decommissioned instruments is available on a separate page.					
FLAMES	Please refer to the Call for Proposals for Period 97 for Paranal telescopes and instruments offered in Period 97.					
FORS	Overview					
HAWK-I	News					
KMOS	Instrument Description	nent Description Focus				
MUSE	Manuals	Nasmyth A	Cassegrain	Nasmyth B	Interferometric	
NACO	Tools	20	FORS2	KMOS		
SINFONI	Instrument Operation Team					
SPHERE	Visitor Instructions	MES	XSHOOTER	UVES	AWDER	
UVES	Science	IERE	VISIR	VIMOS	PIONIER	
VIMOS	UT4 (Yepun)	HAWK-I	SINFONI	MUSE		
VISIR	ATA					
X-SHOOTER	ALI					
Visitor Focus	AT2				AMBER	
VLTI AMBER	AT3				PIONIER	
VLTI PIONIER	AT4					
VLTI Visitor Instrument	A14					
VIRCAM @ VISTA	VISTA		VIRCAM		_	
OmegaCAM @ VST	VST		OmegaCAM			

EUROPEAN SOUTHERN OBSERVATORY

Organisation Européene pour des Recherches Astronomiques dans l'Hémisphère Austral Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre

ESO - European Southern Observatory Karl-Schwarzschild Str. 2, D-85748 Garching bei München

Very Large Telescope Paranal Science Operations OmegaCAM User Manual

Doc. No. VST-MAN-OCM-23110-3110

Issue 96.0, Date 22/01/2015

CCD Parameter	Value			
CCD type	Marconi / e2v / CCD 44 - 82 - 1 - A57			
	thin devices $(20\mu m)$			
Pixel size	15 μm			
Format	Active Pixel Area 2048 x 4102 pixels (2048x4100 used)			
	50 horizontal pre- and 50 overscan pixels			
Default Read Speed	280 kpix/sec			
Flatness	$< 20\mu \text{m}$ peak to valley			
	2 e- at 50 kpix/sec			
B.O.N.	4 e- at 500 kpix/sec			
(not including system noise)	6 e- at 1000 kpix/sec			
Full B.O.N.				
(including system noise)				
at default read speed	5-7 e-			
Gain [e-/ADU]	22.6 with 10% chip-to-chip BMS			
	2 identical output amplifiers with integrated post chip amplifiers			
Output Amplifiers	Charge can in principle be read through either one completely			
	or through both of them simultaneously. In practice			
	only the respective "left" one is used			
Device Lavout	No frame transfer ontion 3 phase parallel register (non split)			
Device Layout	3 phase social register (cplit)			
Dump Drain	A dump drain axists parallel to the serial readout register			
Dump Dram	so that lines can be discarded as a whole			
	A global defect hudget exists specifying the overall defects			
Cosmetics	for all of the 40 science devices			
Cosnictics	(Cosmatically the final device cosmatics are much better than			
	devices used for the WEI)			
CTE	~ 0.000005 per parallel or serial shift			
Horizontal Transfer Frequency	2 Mpixels/see			
Vortical Transfer Frequency	2 Mipixeis/sec			
Vertical Hallsler Frequency	>200 000 a			
	Serial full well is at least 2 times the nivel full well and the summing			
	full well is at least 2 times the pixel full well. These full well and the summing			
Full Wall / Linconity	full well is at least 4 times the pixel full well. These full well values			
Full Well / Linearity	the CTE specified Amplifer full well is around 200,000 a Amplifer			
	full well refers to the limit of linearity i.e. the maximum amount of charge			
	that can be amplified while producing output that matches a linear response			
	to within 1 %			
Donk Current	$c_{0} = \frac{120}{200}$			
Cross tells	$< 2 \text{ e}^{-}$ / pixel / nour (at operating temperature of -120 C)			
	There is cross talk at the level of $< 0.4\%$ between CCDs 93-90.			
Gain variations	1000s # 81 and 88 snows day-to-day gain variations of 1-2% RMS.			
Osmic Ray Sensitivity	<pre>< 3 events / square cm and minute</pre>			
Optical Coating	Single layer anti reflection coating astro BB			
De la recla de la com	(with thickness 42nm instead of 40nm)			
rackage design	Four side buttable (fourth side with larger gap),			
	Invar package with integrated P1100 temperature sensor			

Table 3: Filters available in OmegaCAM							
Filter name	System	$\lambda \; (\mathrm{nm})^a$	$\Delta\lambda~({ m nm})^b$	P2PP name	$\mathrm{comment}^{c}$		
u'	SDSS	354	56	u_SDSS	IF, M		
g'	SDSS	475	134	g_SDSS	IF, M		
r'	SDSS	625	135	r_SDSS	IF, M		
i'	SDSS	756	155	i_SDSS	IF, M		
z'	SDSS	880	80	z_SDSS	IF, M		
В	Johnson	439	103	B_JOHN	IF, S		
V	Johnson	551	98	V_JOHN	IF, S		
v	Strömgren	412	21	v_STRM	IF, M		
$H\alpha^d$ VPHAS+		658.6,659.3	10.5	$NB_{-}659$	IF, S		
$H\!lpha^e$		659.0,666.0,672.6,679.1	11	$H_{-}ALPHA$	IF, 4Q		
$H\alpha(z=0.3)^f$		851.9, 861.4, 869.0, 877.7	12.5	NB_852_861_869_878	IF, CG, $4Q$		
$NB3^{f}$		453.6, 494.3, 533.5, 575.6	15 - 20	NB_454_494_533_575	IF, CG, $4Q$		
$NB4^{f}$		616.1,710.2,755.1,816.4	13 - 20	NB_617_710_755_817	IF, CG, $4Q$		
Calib^{g}	SDSS	$u^\prime,g^\prime,r^\prime,i^\prime$		u_g_r_i_SDSS	IF, CG, 4Q		

Gosts

Fringes

