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What makes a perfect imaging system in
astronomy ?

» Maximize the amount of signal
collected from the source
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Image Formation: di

ffraction pattern
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» The PSF is typically described with the Full Width at Half Maximum (FWHM) intensity.
For the diffraction-limited case this corresponds to ~A/D or ~1.8 A/D (80% encircled

energy).



Resolution: how close 2 objects can
be so that | can distinguish them?

i\i Z K The Rayleigh Criterion: two diffraction-limited PSFs are

I I distinguishable if the maximum of one Airy disk falls on the first

TELESCOPE minimum of the second; this is a separation of ¥1.22 1 /D
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What makes a perfect imaging system in
astronomy ?
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In addition to diffraction,
aberrations in the optical
system, the Earth’s
atmosphere, and scattered
light contribute to the PSF.
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TELESCOPE (<<0.1 arcsec)




e

TELESCOPE (<<0.1 arcsec)
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TELESCOPE (<<0.1 arcsec)

POINT SPREAD Diffraction
FUNCTION Limit
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TELESCOPE (<<0.1 arcsec)

Turbulent Cells with different:

» density — 1. different indices of refraction
» temperature

2. changes rapidly with time
» internal wind speed




original wavefront

Telescope
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original wavefront

deformed wavefront
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Diffraction Limited Image

Seeing Limited Image
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Atmospheric Turbulence structure constant as a function of altitude is
the H-V model:

C2(h) = 5.94 x 10723410 (%)

+2.7x 107 % exp (-2A4/3) + A exp (-~ 10h)

exp(—h)

> C% (k) is the index of refraction structure function [m2/3]

> his the altitude in km

» A and W are adjustable for local conditions



Telescope
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Telescope
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Turbulence causes jitter in a beam or an image,
i.e. random fluctuations of the angle of arrival
of the image (tilt fluctuations)
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Adapted from Figures in [1] and [2]
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single conjugate AO (SCAQO) system using a natural guide star

guide star and target must lie within the same
isoplanatic patch (patch over which coherence is maintained)
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Adapted from Figures in [1] and [2]



single conjugate AO (SCAQO) system using a natural guide star

guide star and target must lie within the same
isoplanatic patch (patch over which coherence is maintained)
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Adapted from Figures in [1] and [2] measurements




raw NACO irhage of GC




raw NACO irhage of GC




Laser guide star AO (LGS-AQO) system using a laser and a guide
star
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Adapted from Figures in [1] and [2] measurements



bing a laser and a guide
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Multi Conjugate Adaptive Optics (MCAO) system using several
Wavefront sensors and deformable mirrors
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Adapted from Figures in [1] and [2] measurements




Adapted from Figures in [1] and [2]



Ground-layer AO (GLAO) system using several
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Guide stars but 1 Wavefront sensor and deformable mirror

Ground-layer AO (GLAO) system using several

Adapted from Figures in [1] and [2]
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of the level of atmospheric turbulence at a particular
site.

Strehl ratio (S) — the ratio of aberrated (achieved) PSF peak
intensity to the diffraction-limited

(theoretical) PSF peak intensity. If ¢ is the RMS wavefront
deviation:

S = e—(27w//\)2







Phase 2:

-From RAW to REDUCED DATA-



The 1ngredients:

- An mstrument comes with a calibration plan -



The instrument’s calibration plan

Calibration Frames to take care of
instrument’s systematics:

BIAS
DARK - |
FLAT FIELD Calibration for Science:

Photometric Standards




BIAS Frame

BIAS frame:

» WHAT? “measures” underlying structure in the
image from the CCD or electronics

» HOW<? taken with Exp Time=0s

ACTION:
To be subtracted from each image




DARK Frame

DARK frame:

» WHAT? “measures” the noise form dark current:
Dark current arises from thermal energy within
the silicon lattice comprising the CCD.

» HOW<? taken with Exp Time=Exp Time of Science
Frame but with the shutter closed so no light
falls on the CCD

ACTION:
To be subtracted from each Science image
(after also the BIAS is subtracted)




FLAT FIELD Frame

FLAT FIELD frame:

» WHAT? “measures” non-uniformities between
pixels (different efficiency, vignetting)

» HOW? Open Shutter image of a fetureless and
uniformly illuminated source (twilight sky or a
dome projector screen)

ACTION:
The Science image must be divided the FLAT
FIELD (after BIAS and DARK subtraction)
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Phase 3:

-Photometry-






The 1ngredients:

1. Calibrated (Reduced) Science Frames
2. Software



Buonanno et al. 1989, PASP, 101, 294
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Flexible Image Transport System (FITS)



Low Stellar Density: Aperture Photometry
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Low Stellar Density: Aperture Photometry
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Curve-of-growth analysis: how big should the
aperture be?
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Background emission as contaminant




High Stellar Density: Point Spread Function (PSF)

Photometry

X-axis

N

ssaulyslig




High Stellar Density: Aperture Photometry?

Annulus to measure sky

Wind
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30 to B0 stars:
Isolated

Well sampled >100,,
Not saturated
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High Stellar Density: Aperture Photometry?

Annulus to measure sky

Wind
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Photometry

PSF Fitting

High Stellar Density

Annulus to measure sky '




Good Sampling




Under Sampling




Dithering




2. Software
2.1 Sextractor (Aperture)
2.2 DAOPHOT (PSF and Aperture)
2.3 DoPHOT (PSF and Aperture)
2.4 HSTPhot/Dolfphot (PSF and Aperture)
2.5 ROMAFOT (PSF)
2.6 ...



misc.



Photometry meets Spectroscopy



Multi Unit Spectroscopic Explorer
--MUSE—
Photometry meets Spectroscopy




MUSE

; 5sec; 548.8 nm

MUSE

; 30 sec; V-band
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Data published in Weilbacher et al. 2015



Flux (10-20 erg/s/cm2/AA)
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Flux (10-20 erg/s/cm2/AA)
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