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Introduction: why mass-loss?



Evidence for mass-loss: shells around stars

Abell 39 nebula
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Evidence for mass-loss: shells around stars

nebula around WR 124
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Evidence for mass-loss: shells around stars

nebula around Mira (o Cet)
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Bubbles are everywhere...

Image credit: Team Ciel Austral

Bubbles are everywhere...
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Evidence for mass-loss: interstellar medium

NGC 3603 cluster
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Evidence for mass-loss: heavy elements

After the period of primordial nucleosynthesys, the Universe was

composed mostly form H and He (with a tiny amount of heavier elements

like Li). Heavy elements (C, N, O, Fe, . . . ) were completely missing.

However, there are heavy elements around us. Where do they come

from? Heavier elements are synthethised during thermonuclear reactions

in the stellar interiors. How do they get into the interstellar medium? 4



Hydrodynamical equations



Boltzmann equation

Particle distribution function F (t, x , ξ) gives the number of particles in

the element of the phase space dx dξ = dx1 dx2 dx3 dξ1 dξ2 dξ3 with

coordinates x and momenta ξ as

F (t, x , ξ) dx dξ.

The time evolution of the particle distribution function under the

influence of external force f acting on partice with mass m and taking

into account particle collisions is

∂F

∂t
+

ξh
m

∂F

∂xh
+ fh

∂F

∂ξh
=

(
dF

dt

)

coll

,

which is the Boltzmann equation. Here used the Einstein summation

convention for index h.
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Momentum equations

The Boltzmann equation can be solved numerically to derive the particle

distribution function. However, for most of practical applications, the

distribution function is very close to the Maxwelian distribution expressed

at given location in the frame comoving with the fluid. In such a case,

just mean quantities are of real importance for the description of the

flow. These are moments of the Boltzmann equation

m

∫

F dξ = ρ, (0th moment, flow density),

1

m

∫

ξF dξ = v , (1st moment, flow velocity).

These can be derived by multiplying the Boltzmann equation by m and

ξ/m and by integrating. However, the equation for n-th moment contains

n+1-th moment. Consequently, we shall close the equations somehow to

avoid obtainig infinite set of equations. This is done for the equation for

the 2nd moment using thermodynamical relations for pressure.
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The continuity equation

Multiplicating the Boltzmann equation by particle mass m and

integrating over the velocity space
∫

m
∂F

∂t
dξ

︸ ︷︷ ︸

1

+

∫

m
ξh
m

∂F

∂xh
dξ

︸ ︷︷ ︸

2

+

∫

m fh
∂F

∂ξh
dξ

︸ ︷︷ ︸

3

=

∫

m

(
dF

dt

)

coll

dξ

︸ ︷︷ ︸

4

1 = m
∂

∂t

∫

F dξ = m
∂n

∂t
=

∂ρ

∂t
,

2 =
∂

∂xh

∫

ξhF dξ = m
∂

∂xh
(nvh) =

∂ (ρvh)

∂xh
,

3 =
∑∫

fh[F ]
∞
−∞ dξ′ = 0 is fh does not depend on ξ,

4 = 0 for conserved quantity (m),

where

� n =
∫
F dξ is number density of particles,

� ρ = mn is the density,

� vh = 1
N

∫
ξhF dξ is the mean speed.
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The continuity equation

This gives
∂ρ

∂t
+

∂ (ρvh)

∂xh
= 0,

or
∂ρ

∂t
+∇ · (ρv) = 0,

which is the continuity equation.
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The continuity equation: interpretation

Integration over volume fixed in space gives

−
∫

V

∂ρ

∂t
dV =

∫

V

∇ · (ρv) dV ,

or, using the Stokes theorem

− d

dt

∫

V

ρ dV =

∮

∂V

ρv dS ,

which is the expression of the law of conservation of mass.

V

9



Equation of motion

Multiplicating the Boltzmann equation by ξi and integrating
∫

ξi
∂F

∂t
dξ

︸ ︷︷ ︸

1

+

∫

ξi
ξh
m

∂F

∂xh
dξ

︸ ︷︷ ︸

2

+

∫

ξi fh
∂F

∂ξh
dξ

︸ ︷︷ ︸

3

=

∫

ξi

(
dF

dt

)

coll

dξ

︸ ︷︷ ︸

4

1 =
∂

∂t

∫

ξiF dξ = m
∂

∂t
(nvi ) =

∂ (ρvi )

∂t
,

2 =
1

m

∂

∂xh

∫

ξiξhF dξ = m
∂

∂xh

∫

(ci + vi )(ch + vh)F dξ =

m
∂

∂xh

[

vivh

∫

F dξ + vh

∫

ciF dξ + vi

∫

chF dξ +

∫

cichF dξ

]

=

∂

∂xh
(mnvivh + 0 + 0 + phi) =

∂

∂xh
(ρvivh + phi) ,

3 =
∑

h

∫
fh[ξiF ]

∞
−∞ dξ′ −

∫ ∑

h δihfhF dξ = −nfi = −ρgi ,

4 = 0 for conserved quantity (ξ), where

� ch = ξh/m − vh is the thermal speed,

� phi = m
∫
cichF dξ is the pressure tensor, phi = pδhi ,

� gi = fi/m is force per unit of mass (acceleration). 10



Equation of motion

This gives
∂ (ρvi )

∂t
+

∂

∂xh
(ρvivh + p δhi)
︸ ︷︷ ︸

Πik

= ρgi ,

which is, after differencing and using the continuity equation,

ρ
∂vi
∂t

+ ρvh
∂vi
∂xh

= − ∂p

∂xi
+ ρgi ,

where Πik is the momentum flux density tensor, or

ρ
∂v

∂t
+ ρv · ∇v = −∇p + ρg ,

the momentum equation. Introducing the Lagrangian derivative the

momentum equation has a form of Newton’s second law

ρ
Dv

Dt
= −∇p + ρg .
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Energy equation

Multiplicating the Boltzmann equation by ξiξj/m and integrating

∫
1

m
ξiξj

∂F

∂t
dξ

︸ ︷︷ ︸

1

+

∫
1

m2
ξiξjξh

∂F

∂xh
dξ

︸ ︷︷ ︸

2

+

∫

ξiξj
fh

m

∂F

∂ξh
dξ

︸ ︷︷ ︸

3

=

∫
1

m
ξiξj

(
dF

dt

)

coll

dξ

︸ ︷︷ ︸

4

1 =
1

m

∂

∂t

∫

ξiξjF dξ = m
∂

∂t

∫

(ci + vi )(cj + vj )F dξ =
∂

∂t
(ρvivj + pij) ,

2 =
1

m2

∂

∂xh

∫

ξiξjξhF dξ = m
∂

∂xh

∫

(ci + vi )(cj + vj)(ch + vh)F dξ =

∂

∂xh
(ρvivjvh + vhpij + viphj + vjphi) ,

3 =

{

0, terms with h 6= i and h 6= j (direct integration),

−finvj − fjnvi , terms with h = i or h = j (per-partes),

4 = 0 when contraction is performed, where

� phij =
∫
chcicjF dξ/m is phij = 0 when neglecting viscosity.
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Energy equation

After the contraction and multiplication by 1
2
we derive

∂

∂t

(
1

2
ρv2 +

3

2
p

)

+
∂

∂xh

(
1

2
ρvhv

2 +
5

2
pvh

)

− ρvigi = 0,

or, introducing the specific energy ρǫ = 3
2
p,

∂

∂t

(

ρǫ+
ρv2

2

)

+∇ ·
[

ρv

(

ǫ+
v2

2

)

+ pv

]

− ρvg = 0,

which is the energy equation.
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Collecting the nuggets: the hydrodynamical equations

∂ρ

∂t
+∇ · (ρv) = 0

ρ
∂v

∂t
+ ρv · ∇v = −∇p + ρg ,

∂

∂t

(

ρǫ+
ρv2

2

)

+∇ ·
[

ρv

(

ǫ+
v2

2

)

+ pv

]

= ρvg

- system of nonlinear first-order partial differential equations

- unknowns ρ, v , p, and ǫ (+equation of state)

- initial and boundary conditions crucial

- inviscid flow, no magnetic field

- some special analytic solutions, general solution only numerically

- stationary solutions are important (∂/∂t = 0, but v 6= 0)
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The hydrodynamical equations in spherical coordinates

In spherical coordinate system, the components of the velocity vector are

v = (vr , vθ, vφ) and the components of force are g = (gr , gθ, gφ). The

equation of continuity is

∂ρ

∂t
+

1

r2
∂

∂r
(r2ρvr ) +

1

r sin θ

∂

∂θ
(sin θρvθ) +

1

r sin θ

∂

∂φ
(ρvφ) = 0

and the components of equation of motion take the form of

∂vr
∂t

+ vr
∂vr
∂r

+
vθ

r

∂vr
∂θ

+
vφ

r sin θ

∂vr
∂φ

−
v2
θ + v2

φ

r
= −1

ρ

∂p

∂r
+ gr ,

∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ

r

∂vθ
∂θ

+
vφ

r sin θ

∂vθ
∂φ

+
vrvθ

r
−

v2
φ cot θ

r
= − 1

rρ

∂p

∂θ
+ gθ,

∂vφ
∂t

+vr
∂vφ
∂r

+
vθ

r

∂vφ
∂θ

+
vφ

r sin θ

∂vφ
∂φ

+
vrvφ

r
+
vθvφ cot θ

r
= − 1

rρ sin θ

∂p

∂φ
+gφ.
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The hydrodynamical equations in spherical symmetry

In a spherical symmetry the hydrodynamic quantities do not depend on θ

and φ coordinates, there is no flow in θ and φ directions (v = v(r)r ) and

the hydrodynamical equations are (v ≡ vr )

∂ρ

∂t
+

1

r2
∂

∂r
(r2ρv) = 0,

∂v

∂t
+ v

∂v

∂r
= −1

ρ

∂p

∂r
+ g .
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How can mass escape stars?



How can mass escape gravitational wells of stars?

Let us start with the momentum equation with gravity

ρ
∂v

∂t
+ ρv

∂v

∂r
= ρgw − ∂p

∂r
− ρGM

r2
,

which can be simplified assuming stationary isothermal outflow (p = a2ρ)

v
dv

dr
= gw − a2

ρ

dρ

dr
− GM

r2
,

where gw gives the force that drives the wind (force per unit of mass, i.e.,

the acceleration) and a is the isothermal sound speed.

We can integrate the equation from the stellar surface R∗ to infinity
∫ ∞

R∗

v
dv

dr
dr =

∫ ∞

R∗

gw dr −
∫ ∞

R∗

a2

ρ

dρ

dr
dr −

∫ ∞

R∗

GM

r2
dr

yielding
1

2
v2
∞ − 1

2
v2
0 =

∫ ∞

R∗

gw dr − a2 ln
ρ∞
ρ0

− GM

R∗

.
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Three ways

The individual terms in

1

2
v2
∞ − 1

2
v2
0 =

∫ ∞

R∗

gw dr − a2 ln
ρ∞
ρ0

− GM

R∗

describe (from left to right) change of the kinetic energy (per unit of

mass), work of driving forces, work of pressure force, and the potential

energy (per unit of mass).

There are three ways to initiate the outflow. Either the initial velocity is

larger than the escape speed vesc,

1

2
v2
0 ≥ GM

R∗

, v0 ≥ vesc =

√

2GM

R∗

, vesc = 620 kms−1

√

M

M⊙

R⊙

R
.

The initial kinetic energy of the flow should be larger than the absolute

value of the potential energy. This is fullfilled for explosive outflows like

supernovae or supernova impostors (e.g., η Car).
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Three ways

The individual terms in

1

2
v2
∞ − 1

2
v2
0 =

∫ ∞

R∗

gw dr − a2 ln
ρ∞
ρ0

− GM

R∗

describe (from left to right) change of the kinetic energy (per unit of

mass), work of driving forces, work of pressure force, and the potential

energy (per unit of mass).

The other possibility is that the driving force is large enough

∫ ∞

R∗

gw dr ≥ GM

R∗

.

This is true for winds driven radiatively, either due to the absorption in

lines (in hot stars) or on dust particles (in luminous cool stars).
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Three ways

The individual terms in

1

2
v2
∞ − 1

2
v2
0 =

∫ ∞

R∗

gw dr − a2 ln
ρ∞
ρ0

− GM

R∗

describe (from left to right) change of the kinetic energy (per unit of

mass), work of driving forces, work of pressure force, and the potential

energy (per unit of mass).

The last possibility is that the work done by pressure forces is large,

a2 ln
ρ0
ρ∞

≥ GM

R∗

.

Because ln(ρ0/ρ∞) is of the order of ten at most, this implies that

a ≈ vesc. This happens in coronal winds of cool main-sequence stars.
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Coronal winds



Is there any evidence for the wind of our Sun?

� two types of the comet tails (Biermann 1951)

19



Is there any evidence for the wind of our Sun?

� aurorae
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Is there any evidence for the wind of our Sun?

� satellite observations

� flux of particles streaming from our Sun (protons, electrons, He, . . . )

� speed about ∼ 500 km s−1

� number density (r = 1a.u.) ∼ 107 particles m−3

� mass-loss rate

Ṁ = 4πr2ρv ≈ 2× 10−14 M⊙ yr−1
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Thermally driven wind

The flux of matter cannot appear due to the escape of particles from the

atmosphere. The root mean square of the total velocity of particles

vth =
√

3kT
mH

in the atmosphere with T = 6000K is about

vth = 12 kms−1, which is significantly lower than the escape speed

vesc = 620 kms−1.

20



Thermally driven wind

The Sun has a large outer

atmosphere called corona. The

corona can be in optical light

observed only during the solar

eclipses or using satellites. The

detection of lines of highly ionized

atoms (Ca XII, Fe XIII, Ni XVI,. . . ,

”coronium”, Grotrian 1939, Edlén

1942) shows that the temperature of the solar corona is about

105 − 106K. Corresponding root mean square of the total velocity of the

order of 100 kms−1 is comparable with the escape speed. Consequently,

the thermal expansion of the solar corona is thought to be the source of

the solar wind (Parker 1958).

This coins the term coronal wind.
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Hydrostatic equilibrium in spherical symmetry

� momentum equation

ρ
∂v

∂t
+ ρv

∂v

∂r
= −∂p

∂r
− ρGM

r2

� stationary case (v = 0)

dp

dr
= −ρGM

r2

� using perfect gas equation of state p = ρa2 in isothermal

atmosphere (a = konst.)

a2
dρ

dr
= −ρGM

r2

� the equation has a solution

ρ = ρ0 exp

[
GM

ra2

]

� which implies nonzero density in infinity: limr→∞ ρ = ρ0
� this means that at the thermal speed overcomes the escape speed at

some point implying otlflow (wind)
21



Parker model of the coronal wind

Let us assume that the coronal wind wind can be described as a

spherically symmetric, stationary, and isothermal outlow. Then the

corresponding hydrodynamical equations are

1

r2
d

dr

(
r2ρv

)
= 0,

ρv
dv

dr
= −a2

dρ

dr
− ρGM

r2
.

The integration of the continuity equation gives the mass-loss rate

Ṁ ≡ 4πr2ρv = const.

Inserting dρ/dr from the continuity equation into the equation of motion

gives ordinary differential equation for velocity

1

v

(
v2 − a2

) dv

dr
=

2a2

r
− GM

r2
,

which can be solved analytically.
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Parker model of the coronal wind

We shall study the momentum equation

1

v

(
v2 − a2

) dv

dr
=

2a2

r
− GM

r2

in more detail.

At radius r = rc given by 2a2/rc = GM/r2c the right-hand side of

momentum equation is equal to zero. This implies either v = a or

dv/dr = 0. This resembles nozzle flow.

At the sonic point (v = a) either r = rc or dv/dr → ∞. At the sonic

point the sound speed is equal to half of the escape speed.
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Solution of the Parker equation

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

v/
a

r/rc
There are two types of continuous solutions describing outflow (wind)

and inflow (accretion). There is one outflow solution that is supersonic at

large distances from the Sun (wind). Other outflow solutions are subsonic

(”breeze”). Observations show supersonic flow at the location of Earth. 24



The coronal wind problem

� what accelerates the solar wind?

⇒ solar wind appears due to thermal expansion of corona

⇒ what heats the corona (energy equation!)
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Temperature distribution in the solar atmosphere

10
3

10
4

10
5

10
6

-500  0  500  1000  1500  2000  2500  3000  3500

T
 [
K

]

h [km]

Solar interior

solar
wind

fotosphere

chromospherechromosphere

corona

transition
region

Tmin

r = 1R
⊙

� based on semiempirical models of solar atmosphere (quiet regions,

Fontenla, Avrett a Loeser 1993)

� thin transition region duet to Field criterion of thermal instability
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Observation of solar corona

SOHO satellie, Fe XII lines, 195 Å
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Observation of solar corona

We observe three types of regions:

� region of closed magnetic fieldlines: hot matter confined by

magnetic field, typically close to the active regions, source of solar

activity (flares, coronal mass ejections), typical temperature 2 · 106K
� quiet regions: medium brightness on the X-ray image, source of

slow (∼ 300 kms−1) solar wind, typical temperature 1 · 106K
� coronal holes: dark region in X-rays, source of fast (∼ 700 kms−1)

solar wind
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Structure of the corona: X-ray and UV region

Spectrum of quiet region (lower spectrum) and active region (upper

spectrum): emission lines of highly ionized elements (Dupree a kol. 1973) 29



Structure of the corona: optical region

magnetic field: close magnetic fieldlines (trapped particles) and open

magnetic fieldlines (outflow of particles)
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Structure of the corona: optical region

� K corona: region close to the Sun r . 2 R⊙, originates due to the

scattering of photosheric radiation on free electrons, as a results of

fast speed of electrons most of photospheric lines are blurred,

continuum polarized (K – ”kontinuerlich”)

� F corona (Fraunhofer’s): difraction of photospheric radiation on

dust particles in the interplanetary matter (zodiacal light), particles

slower, it is possible to observe photospheric Fraunhofer lines
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Structure of the corona: radio domain

� solar radio emission with s λ ∼ 1m produced in corona and

transition region with temperature 105 − 106 K

� origin: thermal free-free emission and synchrotron emission in

regions with strong fields
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Influence of the magnetic field

� structure of the corona determined by the magnetic field
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Influence of the magnetic field

f∗

fTR

f∞ → 1

� sketch of the structure of base corona (Cranmer & Saar 2011)
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Influence of the magnetic field

� plasma beta parameter

β =
p

pmag

=
8πp

B2

� p is pressure (ram pressure in moving media ρv2)

� pmag = B2/(8π) is the magnetic field pressure

� β ≫ 1: magnetic field determined by gas dynamics

� β ≪ 1: gas dynamics determined by magnetic field

� β ≫ 1: typical solar photosphere

� β ∼ 1: photospheric regions with strong fields (typically spots)

� β ≪ 1: corona near Sun
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Measurements ”in situ” at 1 au: velocity

� Mariner 2 (1962): wind is supersonic (confirmation of Parker model)

 200

 300

 400

 500

 600

 40  45  50  55  60  65  70  75

v 
[k

m
/s

]

JD - 2 455 000 [dny]

strong variability: wind velocity (September 2009, ACE satellite – NASA)

� slow wind (∼ 300 kms−1), originates typically in quiet regions

� fast wind (∼ 700 kms−1), originates typically in coronal holes

Feldman a kol. (1977)
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Measurements ”in situ” at 1 au: density

 0
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 25

 40  45  50  55  60  65  70  75

n p
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c
m

-3
]

JD - 2 455 000 [dny]

proton number density (September 2009, ACE satellite – NASA)

� slow wind component (∼ 12 cm−3)

� fast wind component (∼ 4 cm−3)

� variable He abundance, enhanced abundance of elemens with low

first ionization potential (Si, Fe)
Feldman a kol. (1977)

37



Measurements ”in situ” at 1 au: temperature

 0
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 300000

 400000

 40  45  50  55  60  65  70  75

T
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K

]

JD - 2 455 000 [dny]

temperature of ions (September 2009, ACE satellite – NASA)

� different mean temperatures of the fast and slow component

� different temperatures of individual particles

� protons Tp ≈ 1.2 · 105 K

� electrons Te ≈ 1.4 · 105 K

� helium nuclei Tα ≈ 5.8 · 105 K

Feldman a kol. (1977)
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Measurements ”in situ” – Ulysses

solar minimum solar maximum

� variability of the solar wind during the solar cycle

� fast wind originates mostly from the coronal holes around poles

McComas a kol. (2003)
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What is the cause of coronal heating?

� energetics:

� loss rate of coronal energy due to radiation, conduction, and

advection: 3 · 1028 erg s−1

� this corresponds to about 1% of power needed to heat chromosphere

� about 10−5 L⊙

� possibly two different sources of heating needed:

� coronal holes (open magnetic fieldlines)

� loops
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What is the cause of coronal heating? MHD waves?

dissipation of mechanical and electromagnetic energy of MHD waves

� cool stars have deep subsurface convective zone

� convective zone triggers surface oscilations

� generated sound waves heat lower part of the chromosphere, but

their damping is strong and they do not disseminate into corona

� sound waves interact with magnetic field in the corona creating

MHD waves

� dissipation of MHD waves may heat the corona

� hybrid waves or Alfvén waves (narrow frequency range) most

promissing

� another types of waves strongly damped or reflected
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What is the cause of coronal heating? Electric currents?

ohmic heating due to electric currents flowind along the magnetic field

lines

� problem: resistivity too low

� possible solution: plasma turbulence triggerred by instabilities

⇒ ohmic heating possibly important just for low volumes of plasma

(”nanoflares”)

⇒ important just for small loops

42



Parker Solar Probe may tell...

� launched in 2018, should approch Sun within 8.5R⊙
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Sensitivity of the mass-flux to the base temperature

Integrating the momentum

equation

1

v

(
v2 − a2

) dv

dr
=

2a2

r
− GM

r2

over radius we arrive at

v2

2
−a2 ln v = 2a2 ln r+

GM

r
+const.

The constant can be evaluated

requiring for the wind velocity at

the critical point v(rc) = a.

Assuming v ≪ a at the base of the wind, the mass-flux is

ṁ = aρ
( rc

r

)2

exp

[

−GM

a2

(
1

r
− 1

rc

)]

.

Therefore, the mass-flux is very sensitive to temperature as shown from

observations of the Parker Solar Probe (Stansby et al. 2021). 44



CME – coronal mass ejections

(SOHO, coronograph)

� CME: about 1-10% of solar mass loss (Cranmer 2017)

� typically result from flares of filament decay

� occur together with radio storms and bursts of energetic particles

� interact with magnetosphere of Earths leading to auroras
45



Is the solar wind important at all?

mass-loss

� Sun main-sequence star for ∼ 11× 109 yr

� solar wind mass-loss rate 2× 10−14M⊙ yr−1

� total main-sequence mass-loss of about ∼ 10−4M⊙

⇒ too low amount to influence the solar evolution

angular momentum loss

� Sun has magnetic field

� the solar wind is ionized

⇒ solar wind moves flows the magnetic field lines (β ≪ 1)

� solar magnetosphere rotates as a solid bolid up to radius of about

rA ≈ 15 R⊙

⇒ this leads to angular momentum loss and rotational braking

(Weber a Davis 1967)
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Braking the rotation of Sun

The magnitude of solar angular momentum is

L = ηM⊙R
2
⊙Ω,

where Ω is the angular frequency, η ≈ 0.1. Differentiating with respect to

time gives

L̇ = ηM⊙R
2
⊙Ω̇.

The angular momentum loss via spherically-symmetric wind is

L̇ = −2

3
Ṁr2AΩ,

where rA is the radius of effective wind corotation and Ṁ = 4πr2ρv is the

mass-loss rate.
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Radius of effective corotation

Close to the Sun, magnetic field dominates and wind corotates with

magnetic field, β ≪ 1. Further out, the magnetic field becomes weak and

wind starts to dominates, β ≫ 1. There is a radius, where both effects

are balanced and where β ≈ 1 for r = rA.

At radius rA the magnetic field energy density just balances the wind

kinetic energy density,
1

2
ρv2 =

B2

8π
.

This can be rewritten in terms of wind velocity,

v = vA ≡ B√
4πρ

,

where vA is so-called Alfvén speed. For slow wind close to the Sun,

v < vA and the magnetic field dominates, while for fast wind at large

radii v > vA and the matter dominates.
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Alfvén radius

For polar magnetic field B = B⊙ (r/R⊙)
−n

the Alfvén radius is

rA = R⊙

(

B⊙R⊙
√

vṀ

) 1
n−1

.

We can assume that the dipole-generated magnetic field depends on the

rotational frequency via

B⊙ = k⊙Ω
a,

where k⊙ and a are constants. Collecting all terms, this gives equation

for angular momentum loss

L̇ = −2

3
k

2
n−1

⊙ R
2n

n−1

⊙ v−
1

n−1 Ṁ
n−2
n−1Ω1+ 2a

n−1 = ηM⊙R
2
⊙Ω̇.

Dropping all unnecessary constants,

Ω̇ ∼ −Ω1+ 2a
n−1 .
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Rotational braking

The angular momentum equation

has a solution

Ω ∼ t−
n−1
2a .

For a typical dynamo generated

magnetic field a = 1 (Saar 1996),

which gives for n = 2 so-called

Skumanich law

Ω ∼ t−1/2.
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However, one should note that there is a saturation in early phases for

Ω > 10Ω⊙, where a ≈ 0. Anyway, we have seen that the coronal wind is

able to significantly break the rotation of our Sun and the Skumanich law

nicely agrees with observations (Ribas a kol. 2005).
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There are also other stars than our Sun

Cool stars with Teff . 7000K have deep subsurface convective zones.

This means that cool main-sequence stars should also have coronal

winds. This can be tested by

� X-ray emission,

� braking of the stellar rotation.

One can expect that young stars are fast rotators leading strong activity,

which can be manifested by X-ray emission. They lose angular

momentum due to winds. This leads to decrease of rotational velocity,

the subsurface dynamo becomes less effective leading to the decrease of

the stellar activity and X-ray emission.
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Another stars: rotation & X-ray emission

Cool stars later than F5 type show

slower rotation on average (Fukuda

1982). Note the difference between

field and cluster stars.

Cool stars are soft X-ray sources

(Vaiana 1983, Rosner et al. 1985,

EINSTEIN satellite).
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Rotational braking from Kepler photometry
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� the dependence of rotational period on stellar age for Kepler

asteroseismic targets (Angus et al. 2015)
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Relation between the X-ray emission and rotation speed

� relation between X-ray liminosity and rotational velocity projection

(Vaiana 1983, Rosner et al. 1985, EINSTEIN satellite)
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Decrease of X-ray luminosity with age
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� relation between X-ray luminosity

and age (Ribas a kol. 2005)
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Mass-loss rate measurements

Direct mass-loss rate measurements are not available in cool stars. There

are some indirect measurements, for instance, thanks to interaction of

winds with interstallar enironment, which creates astrosphere (or

heliosphere) around stars. The winds plough the neutral hydrogen from

interstellar environment, what is detectable in Hα line. This provides a

possibility to determine Ṁ. (Wood and Linsky 1998, Wood et al. 2002)
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Relation of Ṁ and X-ray flux and age

(Wood a kol. 2005)
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Coronal wind in cool giants?
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� blueshifted IR helium lines: Ṁ ∼ 3× 10−10 − 6× 10−8M⊙ yr−1

(Dupree et al. 2009, mark denotes lab frame wavelength)

� possibly sound-wave driven winds (Holzer et al. 1983)?
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Conclusions

Coronal winds of main-sequence stars are weak and do not influence

stellar evolution significantly. In earlier phases, they might be responsible

for evolution of interplanetary medium. Coronal winds are important for

the interaction of stars with exoplanets and for rotational braking of

main-sequence stars.

The nature of coronal heating is one of the most important open

problems in astrophysics. It is most likley related to a deep hydrogen

convective zone in cool stars. The convection magnifies seed magnetic

fields. Sound waves generated by the convection interact with coronal

magnetic field and create MHD waves. Hybrid MHD waves or Alfvén

waves possibly heat the corona.

In cool gaints, the coronal winds could be important for the mass-loss

(Cranmer & Saar 2011, Suzuki 2013). It is expected that our Sun will

lose a fraction of its mass by this mechanism (about 0.2).
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