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Observation of hot stars

* shells in the surroundings of hot stars

nebula close to the star WR 124 (HST)




Observation of hot stars

* the interstellar medium around hot stars

open cluster NGC 3603 (HST)



Observation of hot stars

« P Cyg line profiles in UV
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Observation of hot stars

+ X-ray emission
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Observation of hot stars

* Ha emission line
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Observations of hot stars

* Infrared excess
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Hot star wind theory

» why is the wind blowing from hot stars?

* what are the main wind parameters (mass-loss
rate, velocity)?

* how to predict the wind line profiles?

* how the wind influences the stellar evolution
and the circumstellar environment?




Why is the wind blowing?

« some force accelerates the material from the
stellar atmosphere to the circumstellar
environment




Why is the wind blowing?

* hot stars are luminous: radiative force?




Why is the wind blowing?

* hot stars are luminous: radiative force?

1 ©.¢)
fas = ¢ [ X(rw)F(r) dv
0

* spherically symmetric case
» x(r,v) absorption coefficient
* F(r,v) radiative flux



Why is the wind blowing?

* hot stars are luminous: radiative force?

1 ©.¢)
fas = ¢ [ X(rw)F(r) dv
0

* radiative force due to the light scattering on
free electrons

x(r.v) = othne(r)

* g1n Thomson scattering cross-section
* ne(r) electron density




Why is the wind blowing?

* hot stars are luminous: radiative force?
1 ©. @)
fag = / x(r.0)F(r.v) dv
0

* radiative force due to the light scattering on
free electrons

oThne(r)L
4wrec

frad —

where L = 41rr2/ F(r,v)dv
0
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* hot stars are luminous: radiative force?
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* radiative force due to the light scattering on
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oThne(r)L
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frad —

- comparison with the gravity force

p(r)GM
r2

ﬁgrav —




Why is the wind blowing?

* hot stars are luminous: radiative force?
1 ©. @)
fag = / x(r.0)F(r.v) dv
0

* radiative force due to the light scattering on
free electrons
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frad —

- comparison with the gravity force
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Why is the wind blowing?

* hot stars are luminous: radiative force?
1 ©. @)
fag = / x(r.0)F(r.v) dv
0

* radiative force due to the light scattering on
free electrons

oThne(r)L
4wrec

frad —

- comparison with the gravity force
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Why is the wind blowing?

* hot stars are luminous: radiative force?
1 ©. @)
fag = / x(r.0)F(r.v) dv
0

* radiative force due to the light scattering on
free electrons

oThne(r)L
4wrec

frad —

- comparison with the gravity force

- example: a Cam, L = 6.2 x 10°L,
M =43M,, [ ~ 0.1




Why is the wind blowing?

* hot stars are luminous: radiative force?
1 ©. @)
fas = ¢ [ X(rw)F(r) dv
0

* radiative force due to the light scattering on
free electrons

oThne(r)L
4wrec

frad —

- comparison with the gravity force

= radiative force due to the light scattering on
free electrons is important, but it never (?)
exceeds the gravity force




Why is the wind blowing?

* hot stars are luminous: radiative force?

1 ©.¢)
fas = ¢ [ X(rw)F(r) dv
0

* radiative force due to the line transitions

x(r,v) = = Z‘Pij(l/)gif;'j (M — nj(r))

m C . .
™ lines 9i 9i

* p;i(v) line profile, [~ gij(v) =1

» f;; oscillator strength

* n;(r), nj(r) level occupation number, g;,
g; statistical weights




Why is the wind blowing?

* hot stars are luminous: radiative force?

1 ©.¢)
fas = ¢ [ X(rw)F(r) dv
0

* radiative force due to the line transitions

fne = 17 / > gify (% "’;)) @i (V) F(r,v) dv

|
line




Why is the wind blowing?

* hot stars are luminous: radiative force?

1 ©.¢)
fas = ¢ [ X(rw)F(r) dv
0

* radiative force due to the line transitions

fne = 11 / > gify (% "’;)) @i (V) F(r,v) dv

|
line

» problem: influence of lines on F(r,v)?




Why is the wind blowing?

* hot stars are luminous: radiative force?

1 ©.¢)
fas = ¢ [ X(rw)F(r) dv
0

* radiative force due to the line transitions

oo = s [T aity ("2 Y g ) ()

» problem: influence of lines on F(r,v)?

* crude solution: F(r,v) constant for
frequencies corresponding to a given
line, v ~ Vij




Why is the wind blowing?

* hot stars are luminous: radiative force?
1 ©. @)
fag = / x(r.0)F(r.v) dv
0

» radiative force due to the line transitions
« maximum force

max me’ ni(r) n-(r)
fiines = —Zgifif <— - = . )

* vjj is the line center frequency



Why is the wind blowing?

* hot stars are luminous: radiative force?
1 ©. @)
fag = / x(r.0)F(r.v) dv
0

* radiative force due to the line transitions
* maximum force: comparison with gravity

fine Le? u(”u)
— fl i
frav  AmepGMc? 2 fimi(r)

line

* neglect of nj(r) < n;(r)
° L,,(l/,'j) = 47l'l’2F(I’,l/ij)




Why is the wind blowing?

* hot stars are luminous: radiative force?
1 ©. @)
fag = / x(r.0)F(r.v) dv
0

* radiative force due to the line transitions
* maximum force: comparison with gravity

MaXx
it _ oy o 1 vyl
f. oOTh N
grav [T Th e
1re2f,-j

T =
VijmeC




Why is the wind blowing?

* hot stars are luminous: radiative force?
1 ©. @)
fas = ¢ [ X(rw)F(r) dv
0

* radiative force due to the line transitions
* maximum force: comparison with gravity

Max
fines _ |—§ : gjj ni Vij V(VU)
fgrav OTh Ne

lines

* hydrogen: mostly ionised in the stellar
envelopes = n;/ng very small =
negligible contribution to radiative force




Why is the wind blowing?

* hot stars are luminous: radiative force?
1 ©. @)
fag = / x(r.0)F(r.v) dv
0

* radiative force due to the line transitions
* maximum force: comparison with gravity

Max
Sy )
fgrav OTh Ne

lines

* neutral helium: n;/ng very small =
negligible contribution to radiative force




Why is the wind blowing?

* hot stars are luminous: radiative force?
1 ©. @)
fag = / x(r.0)F(r.v) dv
0

» radiative force due to the line transitions
- maximum force: which elements?

Max
fl-mes _ |—§ : Ojj N Vij V(VU)
fgrav OTh Ne

lines

* ionised helium: nonnegligible
contribution to the radiative force




Why is the wind blowing?

* hot stars are luminous: radiative force?
1 ©. @)
fas = ¢ [ X(rw)F(r) dv
0

» radiative force due to the line transitions
- maximum force: which elements?

MaxXx

lines __ rz Ojj Nj VU (VU)

OTh Ne

grav lines

* heavier elements (iron, carbon,
nitrogen, oxygen, ...): large number of

lines, ajj/omh ~ 107 = = 7%/ fyray UP tO
10°




Why is the wind blowing?

* hot stars are luminous: radiative force?
1 ©. @)
fag = / x(r.0)F(r.v) dv
0

» radiative force due to the line transitions
- maximum force: which elements?

Max
fl-mes _ |—§ : ojj N Vijj V(VU)
fgrav OTh Ne

lines

= radiative force may be larger than
gravity (for many O stars
fitex [ faray = 2000, Abbott 1982, Gayley

lines

1995)
= stellar wind




Radiative force?

 speculations of Kepler, Newton




Radiative force?

* predicted by James Clerk Maxwell (1873) in
the book A Treatise on Electricity and
Magnetism




Radiative force?

- predicted by James Clerk Maxwell (1873)

+ experimentally tested by Pyotr Nikolaevich
Lebedev (1901), main problem: heating
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radiation pressure in a "normal world"?



Radiative force?

- predicted by James Clerk Maxwell (1873)

+ experimentally tested by Pyotr Nikolaevich
Lebedev (1901), main problem: heating

- why do we not observe the effects of the
radiation pressure in a "normal world"?

- classical particle: E, = 2mv?, p, = ==

v



Radiative force?

- predicted by James Clerk Maxwell (1873)

+ experimentally tested by Pyotr Nikolaevich
Lebedev (1901), main problem: heating

- why do we not observe the effects of the
radiation pressure in a "normal world"?

- classical particle: Ep, = 3 2E

smv?, pp = ¢
* photon: E, = hv, p, = %



Radiative force?

- predicted by James Clerk Maxwell (1873)

+ experimentally tested by Pyotr Nikolaevich
Lebedev (1901), main problem: heating

- why do we not observe the effects of the
radiation pressure in a "normal world"?

° I I . 1 2 __ 2E
classical particle: E, = smv<, p, = <~

74

- photon: E, = hv, p, = £

c
= for E, = E, the momentum ratio is

Py

|74
Pp C



Radiative force?

- predicted by James Clerk Maxwell (1873)

+ experimentally tested by Pyotr Nikolaevich
Lebedev (1901), main problem: heating

- why do we not observe the effects of the
radiation pressure in a "normal world"?

- particle with thermal energy E, ~ kT

Po W ~0.001 (—ore— ) T\
P cVmkT 1015s-1/ \ 100K

* two possibilities:
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* two possibilities:
* large v = X-rays, Compton effect




Radiative force?

- predicted by James Clerk Maxwell (1873)

+ experimentally tested by Pyotr Nikolaevich
Lebedev (1901), main problem: heating

- why do we not observe the effects of the
radiation pressure in a "normal world"?

- particle with thermal energy E, ~ kT

Po W ~0.001 (—ore— ) T\
P cVmkT 1015s-1/ \ 100K

* two possibilities:
* large v = X-rays, Compton effect
* minimise heating (as did Lebedev)




Radiative force?

- predicted by James Clerk Maxwell (1873)

+ experimentally tested by Pyotr Nikolaevich
Lebedev (1901), main problem: heating

- why do we not observe the effects of the
radiation pressure in a "normal world"?

* how to minimise heating?



Radiative force?

- predicted by James Clerk Maxwell (1873)

+ experimentally tested by Pyotr Nikolaevich
Lebedev (1901), main problem: heating

- why do we not observe the effects of the
radiation pressure in a "normal world"?
* how to minimise heating?

 cooling: emission of photon with the same
energy as the absorbed one
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+ experimentally tested by Pyotr Nikolaevich
Lebedev (1901), main problem: heating

- why do we not observe the effects of the
radiation pressure in a "normal world"?

* how to minimise heating?

 cooling: emission of photon with the same
energy as the absorbed one
* line absorption followed by emission
« Thomson scattering




Radiative force?

- predicted by James Clerk Maxwell (1873)

+ experimentally tested by Pyotr Nikolaevich
Lebedev (1901), main problem: heating

- why do we not observe the effects of the
radiation pressure in a "normal world"?

* how to minimise heating?

 cooling: emission of photon with the same
energy as the absorbed one
* line absorption followed by emission
« Thomson scattering
 both processes important in hot star
winds




The Sobolev approximation

 the main problem: the line opacity (lines may
be optically thick)

= necessary to solve the radiative transfer
equation




The Sobolev approximation

»

velocity

radius —




The Sobolev approximation

»

frequency —=—

velocity

radius —

the Doppler effect in the wind




The Sobolev approximation

frequency —=—

radius —

the Doppler effect in the wind




The Sobolev approximation

frequency —=—

radius —

* Avp is the Doppler width of the line




The Sobolev approximation

frequency —=—

radius —

= c—— 5, Is the Sobolev length




The Sobolev approximation

frequency —=—

radius —

» structure does not significantly vary over Lg =
simplification of the calculation of 2 possible




The Sobolev approximation

frequency —=—

radius —

* opacity nonnegligible only over Lg =- solution
of RTE in the "gray" zone only




The Sobolev approximation

frequency —=—

radius —

= Ls (v > vin)




Our assumptions

 spherical symmetry




Our assumptions

 spherical symmetry
- stationary (time-independent) flow




The Sobolev line force |I.

* the radiative transfer equation

s, 1 —u® 8 B
ual(r,u,u) + au’l(r,u.,u) —

r
=n(r.pv) —x(r,uv)I(rpwy)

frame of static observer

stationarity, spherical symmetry

K is frequency, p = cos @

I(r,m,v) is specific intensity

x(r,u,v) is absorption (extinction) coefficient

n(r,u,v) is emissivity (emission coefficient)




The Sobolev line force |I.

* the radiative transfer equation

s, 1 —u® 8
Mal(r,lh”)+ > o

= n(r,u,v) — x(r.p.v)I(r,p,v)

I(r,p,v) =

* problem: x(r,u,v) and n(r,u,v) depend on u
due to the Doppler effect




The Sobolev line force |I.

* the radiative transfer equation

s, 1 —u® 8
Mal(r,lh”)+ > o

= n(r,u,v) — x(r.p.v)I(r,p,v)

I(r,p,v) =

* problem: x(r,u,v) and n(r,u,v) depend on u
due to the Doppler effect

» solution: use comoving frame!




The Sobolev line force |I.

- CMF radiative transfer equation

s, 1—pu’ o
ual(r,u,u)ﬂL > o

vv(r) ,  wprdv(r)\ 0 B
cr (1 TR v(r) dr ) Bul(r'”’u) B

=n(rw) —x(rw)l(r,pv)

I(r,p,v)—

- comoving frame (CMF) equation
* v(r) is the fluid velocity
* x(r,v)and n(r,v) do depend on u




The Sobolev line force |I.

- CMF radiative transfer equation

s, 1 —u® 8
Mal(r#,”) + T

vv(r) ,  wprdv(r)\ 0 B
cr (1 TR v(r) dr ) Bul(r'“’u) B

=n(rw) —x(rw)l(r,pv)

I(r,p,v)—

* neglected aberration, advection (unimportant
for v < c, e.g., Korcadkova & Kubat 2003)

* neglect of the transformation of /(r,u,v)
between individual inertial frames




Intermezzo: the interpretation

frequency —=—

radius —

 in CMF: continuous redshift of a given photon




The Sobolev line force Il.

 the Sobolev transfer equation (Castor 2004)

ﬁ(r U 1_H'Q—I(r 17)—
vv(r) (1 ey w2 dv(r)) s,

Ccr
=n(rw) —x(rw)l(r,pv)



The Sobolev line force Il.

 the Sobolev transfer equation (Castor 2004)

/Za%:l(r,u.,u ﬁbgail(r L, u)—

vv(r) w2 dv(r)
cr (1_“ +v(r) dr ) au! (FHv) =

=n(rw) —x(rw)l(r,pv)

- possible when 2422 j(p 1y p) > 2 1(r,pv)

cr Ov

- dimensional arguments:

» Zi(rpp) ~ AL

» Zl(rpy) ~ M,

Av = v-1 is the line Doppler width



The Sobolev line force Il.

 the Sobolev transfer equation (Castor 2004)

ﬁ(r U= 1_H'Q—I(r 17)—
vv(r) (1 ey w2 dv(r)) s,

Ccr
=n(rw) —x(rw)l(r,pv)

 possible when v(r) > w



The Sobolev line force lllI.

* solution of the transfer equation for one line
vv(r) ,  wprdv(r)\ 0
cr (1 - +v(r) dr /) Ov
=n(rv) — x(rw)l(r.pv)

I(r,p,v) =




The Sobolev line force lllI.

* solution of the transfer equation for one line

vv(r) ,  wprdv(r)\ 0 B
cr (1 B v(r) dr ) aul(r,u.,u) B

=n(rv) —x(rw)l(r.pv)

* line absorption and emission coefficients are

x(r,v) = :: wii(V)gif; ("’éir) - "’gjr))
2hu e’ n;(r)

n(r.v) = ‘PIJ(V)QI ij ;




The Sobolev line force lllI.

* solution of the transfer equation for one line

vv(r) ,  wprdv(r)\ 0 B
cr (1 B v(r) dr ) Bul(r'“"u) B

=n(rv) —x(rw)l(r.pv)

- the line opacity and emissivity are
x(rv) = xL(r)eijv)

n(rw) = XL(r)SL(r)‘Pij(V)

n;(r) ”J(”)
gi gj )

TE

where x (r) = — g,f,, (
e




The Sobolev line force lllI.

* solution of the transfer equation for one line

vv(r) ,  wrdv(r)\ 8 B
cr (1 R v(r) dr ) au’(r’“’”) B

= xL(r)eij(v) (SL(r) = I(rpv))




The Sobolev line force lllI.

* solution of the transfer equation for one line

vv(r) ,  wrdv(r)\ 8 B
cr (1 R v(r) dr ) au’(r’“’”) B

= xL(r)eij(v) (SL(r) = I(rpv))

* Introduce a new variable
y = / dv'e; (V')
174

* where
« y = 0: the incoming side of the line
- y = 1: the outgoing side of the line




The Sobolev line force lllI.

* solution of the transfer equation for one line

vv(r) ,  wurdv(r)\ 0 B
cr (1 R v(r) dr ) Byl(r'”"y) B

— %L (r) (SL(r) — I(r.p,y))




The Sobolev line force lllI.

* solution of the transfer equation for one line

vv(r) ,  wurdv(r)\ 0 B
cr (1 R v(r) dr ) Byl(r'”"y) B

— %L (r) (SL(r) — I(r.p,y))

e assumptions:

* variables do not significantly vary with r
within the "resonance zone"

. 0 d
= fixed r, oy  dy

°* V —

= Integration possible




The Sobolev line force lllI.

* solution of the transfer equation for one line

I(y) = Ic(w) exp [=T(m)y] + SL {1 —exp [-7T(u)y]}

* where
 the Sobolev optical depth is

xL(r)cr
vov(r) (1 — p? + 5‘(25 dﬁ(rr))

T(W) =

* the boundary conditionis I(y = 0) = I.(u)



Intermezzo: the interpretation

frequency —=—

radius —

—1
* T is given by the slope = 7 ~ (3—:)



The Sobolev line force |V.

- the radiative force (the radial component; force
per unit of volume)

1 0
frad = E/ x(r.w)F(r,v)dv
0




The Sobolev line force |V.

- the radiative force (the radial component; force
per unit of volume)

1 ©. @)
frad = E/ dv x(r,v) ]{dQ pl(r,um,v)
0




The Sobolev line force |V.

- the radiative force (the radial component; force
per unit of volume)

Frag = / dv L (1) (v) / A i (rope.0)




The Sobolev line force |V.

- the radiative force (the radial component; force
per unit of volume)

2y (r) [T 1
frad = )ZL( )/ dy/ du pl(r,pm,y)
0 —1




The Sobolev line force |V.

- the radiative force (the radial component; force
per unit of volume)

2T r 1
frad = XCL( )/ dy X
0

/_ e {lo(w) exp [~ ()y] + SL{1 — exp [T ()y]})

» where the Sobolev optical depth is

xL(r)cr

vov(r) (1 — p? + \’,‘(Z,r) d'é(rr))

T(1) =

 7(u) is an even function of u



The Sobolev line force |V.

- the radiative force (the radial component; force
per unit of volume)

foa =2 [Ny [ duntw) e i)y

* no net contribution of the emission to the
radiative force (S, is isotropic in the CMF)




The Sobolev line force |V.

- the radiative force (the radial component; force
per unit of volume)

frag = sz:L(r) /_ O ple(p) — ET(EZ)T(”)]

* inserting
xL(r)cr
vov(r) (1= w2+ {5557

T() =




The Sobolev line force |V.

- the radiative force (the radial component; force
per unit of volume)

Zm:(:;‘;(r) /_1 dp ple(p) [1 + pa(r)] x

" {1 P [‘ uov<r>x<L1(2;rza<r>>] }

r dv(r) |
v(r) dr

- Sobolev (1957), Castor (1974),
Rybicki & Hummer (1978)

frad —

* where a(r) =




Optically thin lines

« optically thin line:

xL(r)cr

Y O C R




Optically thin lines

« optically thin line:

xL(r)cr
vov(r) (1 + pu?o(r))

* the radiative force proportional to

< 1

xL(r)cr
vov(r) (1 + pu?o(r))

frag ~ 1 —exp |—



Optically thin lines

« optically thin line:

xL(r)cr
vov(r) (1 + pu?o(r))

* the radiative force proportional to

< 1

xL(r)cr
vov(r) (1 + po(r))
- xL(r)cr
vov(r) (1 + po(r))

frag ~ 1 —exp |—




Optically thin lines

frad = / du plc(p)xL(r)




Optically thin lines

frad = %XL(f)F(r)




Optically thin lines

frad = %XL(f)F(f)

- optically thin radiative force proportional to the
radiative flux F(r)

- optically thin radiative force proportional to the
normalised line opacity x.(r) (or to the
density)

* the same result as for the static medium




Optically thick lines

« optically thick line:

xL(r)cr

Y O




Optically thick lines

« optically thick line:

xL(r)cr
vov(r) (1 + pu?o(r))

* the radiative force proportional to

> 1

xL(r)cr
vov(r) (1 + pu?o(r))

frag ~ 1 —exp |—



Optically thick lines

« optically thick line:

xL(r)cr
vov(r) (1 + pu?o(r))

* the radiative force proportional to

> 1

xL(r)cr
vov(r) (1 + pu?o(r))

frag ~ 1 —exp |—

~ 1



Optically thick lines

2wV (r)

frad = /_1 du ple(p) (1 + pio(r)]

rc?




Optically thick lines

2TV (r 1
frad = rZQ( )/1dl—"l—"lc(l—") 1+ po(r)]

 neglect of the limb darkening:

I. = const., > s,
Ic(l—")—{ ’ 0 I:;,<I:’ :




Optically thick lines

2wV (r)

1
frad = / du ple |1+ po(r)]
.

rc?




Optically thick lines

rc?

foo = A ko) (1- 3% )

where F =2« ful du pl. = wf—flc




Optically thick lines

rc?

foo = A ko) (1- 3% )

- large distance from the star: r > R,




Optically thick lines

Fraa = ”OV(,’;F ) [1 +o(r) (1 - 352)]

- large distance from the star: r > R,

voF (r)dv(r)
frad ~ C2 dl’




Optically thick lines

foo = 21D o) (1- 32 )]

rc?
- large distance from the star: r > R,

voF (r)dv(r)
frad ~ C2 dl’

- optically thick radiative force proportional to the
radiative flux F(r)

optically thick radiative force proportional to 3;

- optically thick radiative force does not depend
on the level populations or the density




Wind driven by thick lines

* continuity and momentum equation of
Isothermal spherically symmetric wind

Ov v ,0p pGM(1 —1T)
ot "PVar = ¥ gy Thed~

I’2
- p, v are the wind density and velocity
* a s the sound speed



Wind driven by thick lines

* continuity and momentum equation of
Isothermal spherically symmetric wind

1 d
r2dr (r pv) V
dv ,dp pGM(1—T)

pv- =2 a+ﬁad_ p

« assumption: stationary flow



Wind driven by thick lines

* continuity equation

1 d -
r2dr (rzpv) = 0= M = 4mr°pv = const.

- M is the wind mass-loss rate




Wind driven by thick lines

¢ momentum equation

1 d d dv 2
rzdr(r2pv)—O:>—p:—£———p

dr v dr r
* momentum equation:

2_ —_—
(V a)vdr r R p r?
dv @_GM(l—F)
ar p r?

- neglect of the gas-pressure term a°% < f4
(possible in the supersonic part of the wind)




Wind driven by thick lines

¢ momentum equation

dv ~ YyoF(r)dv B GM(1-1T)
Var pc? dr r?

* Inclusion of the expression for the optically
thick line force for r > R,

* F(r) = 2%, where L, is the monochromatic
stellar luminosity (constant)




Wind driven by thick lines

¢ momentum equation

[v vol, ] dv  wv(r)l, GM(1-T)

 4wr2pc2| dr ~ 8mpc2r3 r?




Wind driven by thick lines

¢ momentum equation

L _wly, ldv _ vov(r)L, GM(1—-T)
Awrlpc?| dr  8mwpc3r3 r?

 has a critical point




Wind driven by thick lines

¢ momentum equation

L _wly, ldv _ vov(r)L, GM(1—-T)
Awrlpc? | dr  8mpc2r3 r?

 has a critical point
* consequently

l/ol_,, L

Y

- 5 B
M = 4rmrepv(r) = =~ o




Wind driven by thick lines

¢ momentum equation
L _wly, ldv _ vov(r)L, GM(1—-T)
A repc?

dr 8mwpc2rd r2

 has a critical point

+ consequently

l/ol_,, L

Y

c? c?

M = 4rtrépv(r) =

= mass-loss rate due to one optically thick line
approximatively equal to the "photon
mass-loss rate" (L is stellar luminosity)



Example: a Cam
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Example: a Cam

temperature Tg 30900 K
radius R, 27.6 Ro
mass M 43 Mg

(Lamers et al. 1995)
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temperature Tg 30900 K
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* mass-loss rate due to one optically thick line
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* mass-loss rate due to N,k optically thick lines
M ~ NinickL / ¢

 NLTE calculations: Nk = 1000




Example: a Cam

temperature Tg 30900 K
radius R, 27.6 Ro
mass M 43 Mg

mass-loss rate due to one optically thick line
M~ L/c?

mass-loss rate due to Nk optically thick lines
M ~ NinickL / ¢

NLTE calculations: Ny =~ 1000
L =4moR5TS,, L =620000L




Example: a Cam

temperature Tg 30900 K
radius R, 27.6 Ra
mass M 43 Mo

mass-loss rate due to one optically thick line
M~ L/c?

mass-loss rate due to Nick optically thick lines
M ~ NinickL / ¢

NLTE calculations: Niyick = 1000
L =4moR5TS,, L =620000L

M ~ 4 x 107> Mg yr—!, more precise estimate:
1.5 x 107° Mg yr—! (Krticka & Kubat 2008)




CAK theory

* in reality the wind is driven by a mixture of
optically thick and thin lines

« optically thin line force
1
frad = EXL(f)F(f)

- optically thick line force

voF (r)dv
c2 dr

frad —



CAK theory

* in reality the wind is driven by a mixture of
optically thick and thin lines

- optically thin line force
1
frad = EXL(f)F(f)

- optically thick line force

voF (r)dv

- Sobolev optical depth 15 = %

Odr

fao = X (F(r) (151)°

where a = 0 (thin) or a = 1 (thick)



CAK theory

* in reality the wind is driven by a mixture of
optically thick and thin lines

= 0<ax<l




CAK theory

* in reality the wind is driven by a mixture of
optically thick and thin lines

- the radiative force in the CAK approximation
(Castor, Abbott & Klein 1975)

oThNe L ( 1 dv)a

Amwrec \ oThNeVin Ar

frad:k

* where
* k, a are constants (force multipliers)

* o71h IS the Thomson scattering
cross-section

* ne IS the electron number density

v IS hydrogen thermal speed (for T = Tu)
(ANARKRAHE 100N\




CAK theory

* in reality the wind is driven by a mixture of
optically thick and thin lines

- the radiative force in the CAK approximation
(Castor, Abbott & Klein 1975)

oThNe L 1 dv\“
frad — k 2
4dmrec \ oThneVin dr

* nondimensional parameters k and a describe
the line-strength distribution function (CAK,
Puls et al. 2000)

* In general NLTE calculations necessary to
obtain k and a (Abbott 1982)




CAK theory

* momentum equation with CAK line force
(neglecting the gas pressure term)

dv pGM(1—1T)
PVE = Irad —

r2



CAK theory

* momentum equation with CAK line force
(neglecting the gas pressure term)

v% B kaThneL 1 dv\® pGM(1-T)
PVar = “amrac OThNe Vi, Ar r?




CAK theory

* momentum equation with CAK line force
(neglecting the gas pressure term)

dr ~ 4mc p

, dv o1hL ne (p Arrev dv
rrv— =k .
Ne o1 Mwy, dr

)a—GMu—r)




CAK theory

* momentum equation with CAK line force
(neglecting the gas pressure term)

, dv o1hL ne (p Axr’v dv

a
rPv—r — k . ) —GM(1-T)
Ne o1 Mwy, dr

dr ~ 4mc p

* velocity in terms of the escape speed

2 2GM(1 - T
w = v2 , Where v5,. = ( )
Vesc R*

* new radial variable

(CWninelkt DNONAN



CAK theory

* momentum equation with CAK line force
(neglecting the gas pressure term)

1+w =C(w)”

 where
o / — dw
W_dx
oCE

kO'ThL Ne (p41rGM(1—F))a
AmcGM(1—T) p \ne omMwy
p

o mH
Ne

- algebraic equation




CAK theory

* momentum equation with CAK line force
(neglecting the gas pressure term)

1+w =C(w)”

- different solutions for different values of C
(or mass-loss rate M)



CAK theory

* momentum equation with CAK line force
(neglecting the gas pressure term)

1+w =C(w)”




CAK theory

* momentum equation with CAK line force
(neglecting the gas pressure term)

1+w =C(w)”

- large C (small M): two solutions




CAK theory

* momentum equation with CAK line force
(neglecting the gas pressure term)

1+w =C(w)”

- small C (large M): no solution




CAK theory

* momentum equation with CAK line force
(neglecting the gas pressure term)

1+w =C(w)”

- critical value of C (M): one solution




CAK theory

* momentum equation with CAK line force
(neglecting the gas pressure term)

1+w =C(w)”

- critical (CAK) solution for a specific value of M:
the only smooth solution of detailed
momentum equation from the stellar surface to
infinity

- CAK solution: the largest M possible




CAK theory

* momentum equation with CAK line force
(neglecting the gas pressure term)

1+w =C(w)”

- critical (CAK) solution for a specific value of M:
the only smooth solution of detailed
momentum equation from the stellar surface to
infinity

= possible to derive the wind mass-loss rate and
velocity profile




CAK theory

o R\ 1/2
= W = xiv:voo<1——*>
l — o

* where the terminal velocity

Voo = Vesc 1 — o




CAK theory

0.8 }
2 067
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CAK theory

a R\ /2
= W = xiv:voo<1——*>
l - a r

* where the terminal velocity

Voo = Vesc 1 — o

* V., scales with vegc!



CAK theory

a R\ /2
== xiv:voo<1——*)
l—a r

* where the terminal velocity
Voo = Vesc

1l —a

° V4, Scales with vesc!

* as v, of order of 100kms™—*, hot star winds
are strongly supersonic!



CAK theory

o R\ 1/2
== xiv:voo<1——*)
l -« r

* where the terminal velocity

Voo = Vesc 1 — o

* vV, scales with vegc!
- example: a Cam, vgsc = 620kms™!, a = 0.61




CAK theory

o R\ 1/2
== xiv:voo<1——*)
l -«

* where the terminal velocity

Voo = Vesc 1 — o

° V4, Scales with vesc!

- example: a Cam, vgsc = 620kms™!, a = 0.61
= prediction: v, = 780kms™!




CAK theory

1 — a—1
o (-0
aa
Ly [AmmeGMQ - fa a (kL)i
ITh vin (1 —a) = \ €




CAK theory

1 — a—1
o (-0
aa
Ly [AmmeGMQ - fa a (kL)i
ITh vin (1 —a) = \ €

- example: a Cam: M ~ 9 x 107 Mg yr—!




Beyond the classical CAK theory

* inclusion of the dependence of k on the
lonisation equilibrium — 6 parameter
(Abbott 1982)
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Beyond the classical CAK theory

* inclusion of the dependence of k on the
lonisation equilibrium — 6 parameter
(Abbott 1982)

 dropping of the radial streaming approximation
(Pauldrach, Puls & Kudritzki 1986,
Friend & Abbott 1986)

* NLTE calculation of the level populations
(Pauldrach 1987, Vink, de Koter & Lamers
2000, Grafener & Hamann 2002,

Krticka & Kubat 2004)

 dropping of the Sobolev approximation
(Grafener & Hamann 2008, Sander et al. 2017,
Krticka & Kubat 2017, Sundqvist et al. 2019)




Comparison with observations

* nice wind theory = compare it with
observations!
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wind parameters directly from observations

= we have to work more to understand the wind
spectral characteristics




Comparison with observations

* nice wind theory = compare it with
observations!

* time for hot chocolate (observers will do the
work for us)!?

* problem: it is not possible to “measure” the
wind parameters directly from observations

= we have to work more to understand the wind
spectral characteristics

* more theory, please!




Observations: Ha line profiles

« Ha emission line of a Cam

1.4
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< 12}

S

< 14}
i1
0.9

' 6520 6540 6560 6580 6600
A [A]




Observations: Ha line profiles

recombination line




Observations: Ha line profiles

recombination line




Observations: Ha line profiles

recombination line




Observations: Ha line profiles

recombination line




Observations: Ha line profiles

« our assumption: Ha line is optically thin




Observations: Ha line profiles

« our assumption: Ha line is optically thin
* number of Ha photons emitted per unit of time

Ny ~ npne

* where
* ny is the number density of H
* ne IS the number density of free electrons
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Observations: Ha line profiles

« our assumption: Ha line is optically thin

* number of Ha photons emitted per unit of time

- as ny ~ Mand ng ~ M =Ny, ~ M?

= possibility to derive M using NLTE models

» example: a Cam
- our estimate: 9 x 107°Mg yr—1

« Ha line observation: 1.5 x 107° Mg yr—1
(Puls et al. 2006)




Observations: P Cyg lines |.

 |[UE spectrum of a Cam

1x107°

CIv

— 8x1070} l :
<
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5
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<
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 saturated line profile of P Cyg type




Observations: P Cyg lines |.

* lines of the most abundant ion of a given
element

E
0 -




Observations: P Cyg lines |.
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Observations: P Cyg lines |.

flux A flux B+A

L7 L

wavelength wavelength




Observations: P Cyg lines |.
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Observations: P Cyg lines |.

 |[UE spectrum of a Cam

1x107°

CIv
8x10710 | l
6x1010V\

4x107 ¢

Fy[ergcm2 s A7

2x107°

0 o Cam
0x10 .

1500 1510 1520 1530 1540 1550 1560 1570 1580
A [A]

* absorption in the wind between star and
observer

* emission due to the wind around the star




Observations: P Cyg lines |.

 |[UE spectrum of a Cam

1x107°

CIV
8x10710 | l
6x1o1°\}\
4x10710 |
2x107° \
0 a Cam
0 1

1500 1510 1520 1530 1540 1550 1560 1570 1580
A [A]

Fy[ergcm2 s A7

* the absorption edge originates in the wind with
the highest velocity in the direction of observer




Observations: P Cyg lines |.

 |[UE spectrum of a Cam

1x107°

CIv
— 8x1070} l
<
o 6x10710
N
5
> 4x1070 ¢
S,
<
010710}
o Cam
00 1 1 1 1 1 1
1500 1510 1520 1530 1540 1550 1560 1570 1580

AA]

* the absorption edge originates in the wind with
the highest velocity in the direction of observer

 possibility to derive the terminal velocity v,




Observations: P Cyg lines |.

 |[UE spectrum of a Cam
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Observations: P Cyg lines |.

Fy[ergcm2 s A7

 |[UE spectrum of a Cam

1x107° - -
C IV

8x 10710 l -
6x1071° V\
4x107 ¢ -
2x1070 ¢ ) |

0 a Cam

0 x 10 ' ' ' ' ' '
1500 1510 1520 1530 1540 1550 1560 1570 1580
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Voo —

A—OC

* where A Is the laboratory wavelength of

a given line



Observations: P Cyg lines |.

Fy[ergcm2 s A7

 |[UE spectrum of a Cam

1x107° - -
C IV

8x 10710 l -
6x1071° V\
4x107 ¢ -
2x1070 ¢ ) |

0 a Cam
0 x 10 ' ' ' ' ' '

1500 1510 1520 1530 1540 1550 1560 1570 1580

AA]

AN

Voo —

A—OC

- a Cam: AA=7.9A = v, = 1500kms™!

« our estimate: 780 kms~!



Observations: P Cyg lines |.

 |[UE spectrum of a Cam
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Observations: P Cyg lines |.

 |[UE spectrum of a Cam

1x107° : : : : : : :
CIv

8x 10710 l -

6x1o1°\}\ M

e
‘TU)
o

5

> 4x10710 ¢
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« why is the absorption part saturated?

I(y) = lc(n) exp [=7T(m)y] + SL {1 —exp [—T(n)y]}
- the emergent intensity: y — 1




Observations: P Cyg lines |.

 |[UE spectrum of a Cam

1x107°

CIv

— 8x10710} l
<
o 6x10°10
o
§
o 4x10710 ¢
9,
<
oo 1070 AN

0 o Cam

0x10 ' ' ' ' ' '
1500 1510 1520 1530 1540 1550 1560 1570 1580

A [A]
« why is the absorption part saturated?

I'=Ic(u) exp [=7(u)] + SL11 — exp [—7(u)]}

- optically thick lines T > 1 with §| < I, =
| < I,




Observations: P Cyg lines |.

Fy[ergcm2 s A7

 |[UE spectrum of a Cam

1x107°

CIV
8x10710 | l
B Jar Y \}\
4x10710 |
210710 t AN
o Cam
00 1 1 1 1 1 1
1500 1510 1520 1530 1540 1550 1560 1570 1580

AA]

- for saturated lines (7 > 1) the absorption part
of the P Cyg line profile does not depend on T

= determination of v, possible
= determination of M impossible



Observations: P Cyg lines Il.

« HST spectrum of HD 13268
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 unsaturated line profile of P Cyg type




Observations: P Cyg lines Il.

« HST spectrum of HD 13268

15x 107" : : : : : . .
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Observations: P Cyg lines Il.

« HST spectrum of HD 13268
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Observations: P Cyg lines Il.

« HST spectrum of HD 13268

15x 107" : : : : : . .
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T l
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Observations: P Cyg lines Il.

« HST spectrum of HD 13268

15x 107" '
A\

,—:< 1.0x10_11 - WW W
s
8 50x10712 | Fe 1
&
[ F
0.0 x 10° - -1 - - - - -
1500 1510 1520 1530 1540 1550 1560 1570 1580
A A]
11'62 qC|VZC dv
T(p=1) = —\;f; g
MmeC 4wmy vr2 \ dr

« Zc Is the carbon number density relatively to H

* qgcyy Is the ionisation fraction of CIV



Observations: P Cyg lines Il.

« HST spectrum of HD 13268

15x 107" '
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’
mec” Y 4Awmy v2 R,

* our order-of-magnitude approximations:
V — Vs, ¥ — Ry, dv/dr — v /R,



Observations: P Cyg lines Il.

« HST spectrum of HD 13268
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:
mgc Y 4mrmy v2 R,

= from unsaturated wind line profiles possible to
derive gciyM




Observations: P Cyg lines Il.

« HST spectrum of HD 13268

15x 107" '
A\

£ |
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£
= F
S 50x1072} © 1
T
[ F
0.0 x 10° ' = ' ' ' ' '
1500 1510 1520 1530 1540 1550 1560 1570 1580
MA
2
TE ZC 1 :
T(k =1) = —Ajjf; qcivM

mec” "V 4wmy v2 R,
- inour case gogyM =4 x 10710 Mg yr!
M can be derived with a knowledge of qgy



Observation: X-ray emission

- X-ray spectrum 8* Ori C
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Observation: X-ray emission

« X-ray emission of hot stars consists of
numerous lines of highly excited elements
(NvI, Ovil, Fe Xxiv, ...)

* signature of a presence of gas with
temperatures of the order 10° K

« X-ray emission originates in the wind
> how?



Observation: X-ray emission

* problem:

 the wind temperature is of the order of the
stellar effective temperature — 10* K (as
expected from the observed ionisation
structure and as derived from NLTE
models, e.g., Drew 1989)

* how can such gas emit X-ray radiation with
typical temperatures ~ 10° K?
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typical temperatures ~ 10° K?

» solution:

* most of the wind material is "cool" with
temperatures of order of 10* K

 only a very small fraction of the wind is
very hot ~ 10° K

* the "hot" material quickly cools down
(radiatively)




Observation: X-ray emission

* problem:
 the wind temperature is of the order of the
stellar effective temperature — 10* K

* how can such gas emit X-ray radiation with
typical temperatures ~ 10° K?

» solution:

* most of the wind material is "cool" with
temperatures of order of 10* K

 only a very small fraction of the wind is
very hot ~ 10° K

* the "hot" material quickly cools down
(radiatively)

* further problem: how is this possible?




Wind instabilities

I = Iy exp(-Tf, ¢ (v)dv)

Vo

- the radiative transfer in the comoving frame




Wind instabilities

I = Iy exp(-Tf, ¢ (v)dv)

Vo

* the absorption profile in the comoving frame




Wind instabilities

I = Iy exp(-Tf, ¢ (v)dv)

* the line force




Wind instabilities

=1 exp(-Tf, ¢ (v)dv)

* the line force after a small change of the
velocity



Wind instabilities

= hydrodynamical simulations are necessary to
describe the instability in detail (Owocki et al.
1988, Feldmeier et al. 1997, Runacres &
Owocki 2002)




Wind instabilities

* hydrodynamical simulations
(Feldmeler et al. 1997)




Wind instabilities

* hydrodynamical simulations are able to explain
the main properties of X-ray emission of hot
stars




Wind instabilities

« 2D structure of wind due to line-driven wind

instability

l0g'* p/pe=o 10 I L

wdosbod] Lpbi bl
300 ksec

(Sundgqvist et al. 2

wonbvd fyg b b
400 ksec

018)



Stars in HR diagram
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 stars with M = 15 My have strong winds
basically during all evolutionary phases




Importance of hot star winds I.

stars more massive than M 2> 20 My have
strong winds basically during all evolutionary
phases

the duration of the main-sequence phase of
massive stars is about 10° yr

during this time massive stars lose mass at the
rate of the order of 107° M, yr—*

a significant part of stellar mass can be lost
due to the winds

most significant uncertainties of evolution of
binary black hole merger progenitors
connected with mass-loss (Abbott et al. 2017)



The importance of hot star wind |l.

* the evolutionary phases connected with the
wind




The importance of hot star wind |l.

* the evolutionary phases connected with the
wind
- Wolf-Rayett stars

hot stars with very strong wind (mass-loss
rate could be of the order of 107> Mg yr—1)

wind starts already in the stellar
atmosphere

spectrum dominated by emission lines

enhanced abundance of nitrogen and/or
carbon and oxygen
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* the evolutionary phases connected with the
wind

- Wolf-Rayett stars
* how can these stars originate?
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The importance of hot star wind |l.

* the evolutionary phases connected with the
wind
- Wolf-Rayett stars
* during the stellar evolution the core
abundance of nitrogen (hydrogen burning)

and carbon+oxygen (helium burning)
Increases

- stellar wind blows out the hydrogen-rich
stellar envelope and expose nitrogen or
carbon+oxygen rich core

= Wolf-Rayett stars
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The importance of hot star wind lll.

 planetary nebulae
- during the AGB stage of solar-like stars
(M ~ 1M) the star loses a significant part
of its mass via slow (~ 10kms™1)
high-density wind
 the hot degenerated core is exposed

* during this stage the star has fast
low-density line-driven wind

= planetary nebula: interaction of slow
high-density and fast low-density winds




The importance of hot star wind lll.

 planetary nebulae




The importance of hot star wind I V.

* hot star wind influence also the interstellar
environment

« enrichment of the interstellar medium
* momentum input to the interstellar medium

* Is an important source of galactic cosmic
ray particles

(e.g., Dale & Bonnell 2008, Aharonian et al. 2018)







More informations (book, reviews)

- Lamers, H. J. G. L. M. & Cassinelli, J. P., 1999,
Introduction to Stellar Winds (Cambridge:
Cambridge Univ. Press)

- Puls, J., Vink, J. S., Najarro, F. 2008, Mass loss
from hot massive stars, AA&ARv, 16, 209

« Owocki, S. P. 2004, EAS Publications Series,
Vol. 13, Evolution of Massive Stars, 163

» Vink, Jorick S., 2021, Theory and Diagnostics
of Hot Star Mass Loss, arXiv:2109.08164

« Krticka, J., Kubat, J. 2007, Active OB-Stars
(San Francisco: ASP Conf. Ser), 153
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