Stellar winds of hot stars

Jiří Krtička

Masaryk University, Brno, Czech Republic

• shells in the surroundings of hot stars

nebula close to the star WR 124 (HST)

• the interstellar medium around hot stars

open cluster NGC 3603 (HST)

P Cyg line profiles in UV

X-ray emission

Hα emission line

 α Cam, 2m telescope in Ondřejov (Kubát 2003)

infrared excess

Hot star wind theory

- why is the wind blowing from hot stars?
- what are the main wind parameters (mass-loss rate, velocity)?
- how to predict the wind line profiles?
- how the wind influences the stellar evolution and the circumstellar environment?

 some force accelerates the material from the stellar atmosphere to the circumstellar environment

• hot stars are luminous: radiative force?

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \chi(r,\nu) F(r,\nu) \, \mathrm{d}\nu$$

- spherically symmetric case
- $\boldsymbol{\chi}(\boldsymbol{r},\boldsymbol{\nu})$ absorption coefficient
- $F(r,\nu)$ radiative flux

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \chi(r,\nu) F(r,\nu) \, \mathrm{d}\nu$$

 radiative force due to the light scattering on free electrons

$$oldsymbol{\chi}(r,oldsymbol{
u})=oldsymbol{\sigma}_{\mathsf{Th}}oldsymbol{n}_{\mathsf{e}}(r)$$

- σ_{Th} Thomson scattering cross-section
- $n_{\rm e}(r)$ electron density

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \chi(r,\nu) F(r,\nu) \, \mathrm{d}\nu$$

 radiative force due to the light scattering on free electrons

$$f_{\rm rad} = \frac{\sigma_{\rm Th} n_{\rm e}(r) L}{4\pi r^2 c}$$

where $L = 4\pi r^2 \int_0^\infty F(r, \nu) \, d\nu$

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \chi(r,\nu) F(r,\nu) \, \mathrm{d}\nu$$

 radiative force due to the light scattering on free electrons

$$f_{rad} = rac{\sigma_{Th} n_{e}(r) L}{4 \pi r^2 c}$$

comparison with the gravity force

$$f_{\text{grav}} = rac{oldsymbol{
ho}(r)GM}{r^2}$$

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \chi(r,\nu) F(r,\nu) \, \mathrm{d}\nu$$

 radiative force due to the light scattering on free electrons

$$f_{rad} = rac{\sigma_{Th} n_{e}(r) L}{4 \pi r^2 c}$$

comparison with the gravity force

$$\Gamma \equiv rac{f_{
m rad}}{f_{
m grav}} = rac{\sigma_{
m T} rac{n_{
m e}(r)}{
ho(r)} L}{4\pi c G M}$$

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \chi(r,\nu) F(r,\nu) \, \mathrm{d}\nu$$

 radiative force due to the light scattering on free electrons

$$f_{\rm rad} = rac{\sigma_{\rm Th} n_{\rm e}(r) L}{4 \pi r^2 c}$$

comparison with the gravity force

$$\Gamma \approx 10^{-5} \left(\frac{L}{1 \, \text{L}_{\odot}}\right) \left(\frac{M}{1 \, \text{M}_{\odot}}\right)^{-1}$$

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \chi(r,\nu) F(r,\nu) \, \mathrm{d}\nu$$

 radiative force due to the light scattering on free electrons

$$f_{\rm rad} = rac{\sigma_{\rm Th} n_{\rm e}(r) L}{4 \pi r^2 c}$$

- comparison with the gravity force
- example: α Cam, $L = 6.2 \times 10^5 L_{\odot}$, $M = 43 M_{\odot}$, $\Gamma \approx 0.1$

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \chi(r,\nu) F(r,\nu) \, \mathrm{d}\nu$$

 radiative force due to the light scattering on free electrons

$$f_{\rm rad} = rac{\sigma_{\rm Th} n_{\rm e}(r) L}{4 \pi r^2 c}$$

- comparison with the gravity force
- ⇒ radiative force due to the light scattering on free electrons is important, but it never (?) exceeds the gravity force

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \chi(r,\nu) F(r,\nu) \, \mathrm{d}\nu$$

radiative force due to the line transitions

$$\boldsymbol{\chi}(\boldsymbol{r},\boldsymbol{\nu}) = \frac{\boldsymbol{\pi}\boldsymbol{e}^2}{m_{\rm e}\boldsymbol{c}} \sum_{\rm lines} \boldsymbol{\varphi}_{ij}(\boldsymbol{\nu}) \boldsymbol{g}_i \boldsymbol{f}_{ij} \left(\frac{\boldsymbol{n}_i(\boldsymbol{r})}{\boldsymbol{g}_i} - \frac{\boldsymbol{n}_j(\boldsymbol{r})}{\boldsymbol{g}_j}\right)$$

- $\boldsymbol{\varphi}_{ij}(\boldsymbol{\nu})$ line profile, $\int_0^\infty \boldsymbol{\varphi}_{ij}(\boldsymbol{\nu}) = 1$
- *f_{ij}* oscillator strength
- *n_i(r)*, *n_j(r)* level occupation number, *g_i*,
 g_j statistical weights

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \boldsymbol{\chi}(\boldsymbol{r}, \boldsymbol{\nu}) \boldsymbol{F}(\boldsymbol{r}, \boldsymbol{\nu}) \, \mathrm{d}\boldsymbol{\nu}$$

radiative force due to the line transitions

$$f_{\text{line}} = \frac{\pi e^2}{m_{\text{e}} c^2} \int_0^\infty \sum_{\text{line}} g_i f_{ij} \left(\frac{n_i(r)}{g_i} - \frac{n_j(r)}{g_j} \right) \varphi_{ij}(\nu) F(r,\nu) \, \mathrm{d}\nu$$

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \boldsymbol{\chi}(\boldsymbol{r}, \boldsymbol{\nu}) \boldsymbol{F}(\boldsymbol{r}, \boldsymbol{\nu}) \, \mathrm{d}\boldsymbol{\nu}$$

radiative force due to the line transitions

$$f_{\text{line}} = \frac{\pi e^2}{m_{\text{e}} c^2} \int_0^\infty \sum_{\text{line}} g_i f_{ij} \left(\frac{n_i(r)}{g_i} - \frac{n_j(r)}{g_j} \right) \varphi_{ij}(\nu) F(r,\nu) \, \mathrm{d}\nu$$

• problem: influence of lines on $F(r,\nu)$?

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \boldsymbol{\chi}(\boldsymbol{r}, \boldsymbol{\nu}) \boldsymbol{F}(\boldsymbol{r}, \boldsymbol{\nu}) \, \mathrm{d}\boldsymbol{\nu}$$

radiative force due to the line transitions

$$f_{\text{line}} = \frac{\pi e^2}{m_{\text{e}} c^2} \int_0^\infty \sum_{\text{line}} g_i f_{ij} \left(\frac{n_i(r)}{g_i} - \frac{n_j(r)}{g_j} \right) \varphi_{ij}(\nu) F(r,\nu) \, \mathrm{d}\nu$$

- problem: influence of lines on $F(r,\nu)$?
- crude solution: $F(r,\nu)$ constant for frequencies corresponding to a given line, $\nu \approx \nu_{ij}$

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \chi(r,\nu) F(r,\nu) \, \mathrm{d}\nu$$

radiative force due to the line transitions
maximum force

$$f_{\text{lines}}^{\text{max}} = \frac{\pi e^2}{m_{\text{e}} c^2} \sum_{\text{lines}} g_i f_{ij} \left(\frac{n_i(r)}{g_i} - \frac{n_j(r)}{g_j} \right) F(r, \nu_{ij})$$

• ν_{ij} is the line center frequency

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \chi(r,\nu) F(r,\nu) \, \mathrm{d}\nu$$

radiative force due to the line transitions
maximum force: comparison with gravity

$$\frac{f_{\text{line}}^{\text{max}}}{f_{\text{grav}}} = \frac{Le^2}{4m_{\text{e}}\rho GMc^2} \sum_{\text{line}} f_{ij}n_i(r) \frac{L_{\nu}(\nu_{ij})}{L}$$

- neglect of $n_j(r) \ll n_i(r)$
- $L_{\nu}(\nu_{ij}) = 4\pi r^2 F(r,\nu_{ij})$

hot stars are luminous: radiative force?

$$\boldsymbol{f}_{\text{rad}} = \frac{1}{c} \int_0^\infty \boldsymbol{\chi}(\boldsymbol{r}, \boldsymbol{\nu}) \boldsymbol{F}(\boldsymbol{r}, \boldsymbol{\nu}) \, \mathrm{d}\boldsymbol{\nu}$$

radiative force due to the line transitions
maximum force: comparison with gravity

$$\frac{f_{\text{lines}}^{\text{max}}}{f_{\text{grav}}} = \Gamma \sum_{\text{lines}} \frac{\sigma_{ij}}{\sigma_{\text{Th}}} \frac{n_i}{n_e} \frac{\nu_{ij} L_{\nu}(\nu_{ij})}{L}$$
$$\sigma_{ij} = \frac{\pi e^2 f_{ij}}{\nu_{ij} m_e c}$$

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \chi(r,\nu) F(r,\nu) \, \mathrm{d}\nu$$

radiative force due to the line transitions
maximum force: comparison with gravity

$$\frac{f_{\text{lines}}^{\text{max}}}{f_{\text{grav}}} = \Gamma \sum_{\text{lines}} \frac{\sigma_{ij}}{\sigma_{\text{Th}}} \frac{n_i}{n_e} \frac{\nu_{ij} L_{\nu}(\nu_{ij})}{L}$$

• hydrogen: mostly ionised in the stellar envelopes $\Rightarrow n_i/n_e$ very small \Rightarrow negligible contribution to radiative force

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \chi(r,\nu) F(r,\nu) \, \mathrm{d}\nu$$

radiative force due to the line transitions
maximum force: comparison with gravity

$$\frac{f_{\text{lines}}^{\text{max}}}{f_{\text{grav}}} = \Gamma \sum_{\text{lines}} \frac{\sigma_{ij}}{\sigma_{\text{Th}}} \frac{n_i}{n_e} \frac{\nu_{ij} L_{\nu}(\nu_{ij})}{L}$$

• neutral helium: n_i/n_e very small \Rightarrow negligible contribution to radiative force

hot stars are luminous: radiative force?

$$\boldsymbol{f}_{\text{rad}} = \frac{1}{c} \int_0^\infty \boldsymbol{\chi}(\boldsymbol{r}, \boldsymbol{\nu}) \boldsymbol{F}(\boldsymbol{r}, \boldsymbol{\nu}) \, \mathrm{d}\boldsymbol{\nu}$$

radiative force due to the line transitions
maximum force: which elements?

$$\frac{f_{\text{lines}}^{\text{max}}}{f_{\text{grav}}} = \Gamma \sum_{\text{lines}} \frac{\sigma_{ij}}{\sigma_{\text{Th}}} \frac{n_i}{n_e} \frac{\nu_{ij} L_{\nu}(\nu_{ij})}{L}$$

• ionised helium: nonnegligible contribution to the radiative force

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \chi(r,\nu) F(r,\nu) \, \mathrm{d}\nu$$

radiative force due to the line transitions
maximum force: which elements?

$$\frac{f_{\text{lines}}^{\text{max}}}{f_{\text{grav}}} = \Gamma \sum_{\text{lines}} \frac{\sigma_{ij}}{\sigma_{\text{Th}}} \frac{n_i}{n_e} \frac{\nu_{ij} L_{\nu}(\nu_{ij})}{L}$$

• heavier elements (iron, carbon, nitrogen, oxygen, ...): large number of lines, $\sigma_{ij}/\sigma_{Th} \approx 10^7 \Rightarrow f_{line}^{max}/f_{grav}$ up to 10^3

hot stars are luminous: radiative force?

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \chi(r,\nu) F(r,\nu) \, \mathrm{d}\nu$$

radiative force due to the line transitions
maximum force: which elements?

$$\frac{f_{\text{lines}}^{\text{max}}}{f_{\text{grav}}} = \Gamma \sum_{\text{lines}} \frac{\sigma_{ij}}{\sigma_{\text{Th}}} \frac{n_i}{n_e} \frac{\nu_{ij} L_{\nu}(\nu_{ij})}{L}$$

- ⇒ radiative force may be larger than gravity (for many O stars $f_{\text{lines}}^{\text{max}}/f_{\text{grav}} \approx 2000$, Abbott 1982, Gayley 1995)
- \Rightarrow stellar wind

speculations of Kepler, Newton

 predicted by James Clerk Maxwell (1873) in the book A Treatise on Electricity and Magnetism

- predicted by James Clerk Maxwell (1873)
- experimentally tested by Pyotr Nikolaevich Lebedev (1901), main problem: heating

- predicted by James Clerk Maxwell (1873)
- experimentally tested by Pyotr Nikolaevich Lebedev (1901), main problem: heating
- why do we not observe the effects of the radiation pressure in a "normal world"?

- predicted by James Clerk Maxwell (1873)
- experimentally tested by Pyotr Nikolaevich Lebedev (1901), main problem: heating
- why do we not observe the effects of the radiation pressure in a "normal world"?

• classical particle:
$$E_{p} = \frac{1}{2}mv^{2}$$
, $p_{p} = \frac{2E}{v}$

- predicted by James Clerk Maxwell (1873)
- experimentally tested by Pyotr Nikolaevich Lebedev (1901), main problem: heating
- why do we not observe the effects of the radiation pressure in a "normal world"?
 - classical particle: $E_{p} = \frac{1}{2}mv^{2}$, $p_{p} = \frac{2E}{v}$

• photon:
$$E_{\nu} = h\nu$$
, $p_{\nu} = rac{E}{c}$
- predicted by James Clerk Maxwell (1873)
- experimentally tested by Pyotr Nikolaevich Lebedev (1901), main problem: heating
- why do we not observe the effects of the radiation pressure in a "normal world"?
 - classical particle: $E_{p} = \frac{1}{2}mv^{2}$, $p_{p} = \frac{2E}{v}$

• photon:
$$E_{\nu}=h
u$$
, $p_{
u}=rac{E}{c}$

 \Rightarrow for $E_{\rm p} = E_{\nu}$ the momentum ratio is

$$rac{p_
u}{p_{
m p}}pproxrac{
u}{c}$$

- predicted by James Clerk Maxwell (1873)
- experimentally tested by Pyotr Nikolaevich Lebedev (1901), main problem: heating
- why do we not observe the effects of the radiation pressure in a "normal world"?
 - particle with thermal energy $E_{\rm p} \approx kT$

$$\frac{p_{\nu}}{p_{\rm p}} \approx \frac{h\nu}{c\sqrt{mkT}} \approx 0.001 \left(\frac{\nu}{10^{15}\,{\rm s}^{-1}}\right) \left(\frac{T}{100\,{\rm K}}\right)^{-1/2}$$

two possibilities:

- predicted by James Clerk Maxwell (1873)
- experimentally tested by Pyotr Nikolaevich Lebedev (1901), main problem: heating
- why do we not observe the effects of the radiation pressure in a "normal world"?
 - particle with thermal energy $E_{\rm p} \approx kT$

$$\frac{p_{\nu}}{p_{\rm p}} \approx \frac{h\nu}{c\sqrt{mkT}} \approx 0.001 \left(\frac{\nu}{10^{15}\,{\rm s}^{-1}}\right) \left(\frac{T}{100\,{\rm K}}\right)^{-1/2}$$

two possibilities:

• large $\nu \Rightarrow$ X-rays, Compton effect

- predicted by James Clerk Maxwell (1873)
- experimentally tested by Pyotr Nikolaevich Lebedev (1901), main problem: heating
- why do we not observe the effects of the radiation pressure in a "normal world"?
 - particle with thermal energy $E_{\rm p} \approx kT$

$$\frac{p_{\nu}}{p_{\rm p}} \approx \frac{h\nu}{c\sqrt{mkT}} \approx 0.001 \left(\frac{\nu}{10^{15}\,{\rm s}^{-1}}\right) \left(\frac{T}{100\,{\rm K}}\right)^{-1/2}$$

- two possibilities:
 - large $\nu \Rightarrow$ X-rays, Compton effect
 - minimise heating (as did Lebedev)

- predicted by James Clerk Maxwell (1873)
- experimentally tested by Pyotr Nikolaevich Lebedev (1901), main problem: heating
- why do we not observe the effects of the radiation pressure in a "normal world"?
 - how to minimise heating?

- predicted by James Clerk Maxwell (1873)
- experimentally tested by Pyotr Nikolaevich Lebedev (1901), main problem: heating
- why do we not observe the effects of the radiation pressure in a "normal world"?
 - how to minimise heating?
 - cooling: emission of photon with the same energy as the absorbed one

- predicted by James Clerk Maxwell (1873)
- experimentally tested by Pyotr Nikolaevich Lebedev (1901), main problem: heating
- why do we not observe the effects of the radiation pressure in a "normal world"?
 - how to minimise heating?
 - cooling: emission of photon with the same energy as the absorbed one
 - line absorption followed by emission
 - Thomson scattering

- predicted by James Clerk Maxwell (1873)
- experimentally tested by Pyotr Nikolaevich Lebedev (1901), main problem: heating
- why do we not observe the effects of the radiation pressure in a "normal world"?
 - how to minimise heating?
 - cooling: emission of photon with the same energy as the absorbed one
 - line absorption followed by emission
 - Thomson scattering
 - both processes important in hot star winds

- the main problem: the line opacity (lines may be optically thick)
- \Rightarrow necessary to solve the radiative transfer equation

radius -->

the Doppler effect in the wind

radius -->

the Doppler effect in the wind

radius --->

• $\Delta \nu_{\rm D}$ is the Doppler width of the line

• structure does not significantly vary over $L_S \Rightarrow$ simplification of the calculation of f^{rad} possible

radius -->

• opacity nonnegligible only over $L_S \Rightarrow$ solution of RTE in the "gray" zone only

Our assumptions

spherical symmetry

Our assumptions

- spherical symmetry
- stationary (time-independent) flow

the radiative transfer equation

$$\mu \frac{\partial}{\partial r} I(r,\mu,\nu) + \frac{1-\mu^2}{r} \frac{\partial}{\partial \mu} I(r,\mu,\nu) =$$
$$= \eta(r,\mu,\nu) - \chi(r,\mu,\nu) I(r,\mu,\nu)$$

- frame of static observer
- stationarity, spherical symmetry
- μ is frequency, $\mu = \cos \theta$
- $I(r,\mu,\nu)$ is specific intensity
- $\boldsymbol{\chi}(\boldsymbol{r},\boldsymbol{\mu},\boldsymbol{\nu})$ is absorption (extinction) coefficient
- $\eta(r,\mu,\nu)$ is emissivity (emission coefficient)

the radiative transfer equation

$$\mu \frac{\partial}{\partial r} I(r,\mu,\nu) + \frac{1-\mu^2}{r} \frac{\partial}{\partial \mu} I(r,\mu,\nu) =$$
$$= \eta(r,\mu,\nu) - \chi(r,\mu,\nu) I(r,\mu,\nu)$$

 problem: χ(r,μ,ν) and η(r,μ,ν) depend on μ due to the Doppler effect

the radiative transfer equation

$$\mu \frac{\partial}{\partial r} I(r,\mu,\nu) + \frac{1-\mu^2}{r} \frac{\partial}{\partial \mu} I(r,\mu,\nu) =$$
$$= \eta(r,\mu,\nu) - \chi(r,\mu,\nu) I(r,\mu,\nu)$$

- problem: χ(r,μ,ν) and η(r,μ,ν) depend on μ due to the Doppler effect
- solution: use comoving frame!

CMF radiative transfer equation

$$\mu \frac{\partial}{\partial r} I(r,\mu,\nu) + \frac{1-\mu^2}{r} \frac{\partial}{\partial \mu} I(r,\mu,\nu) - \frac{\nu v(r)}{cr} \left(1-\mu^2 + \frac{\mu^2 r}{v(r)} \frac{dv(r)}{dr} \right) \frac{\partial}{\partial \nu} I(r,\mu,\nu) = \eta(r,\nu) - \chi(r,\nu) I(r,\mu,\nu)$$

- comoving frame (CMF) equation
- **v**(**r**) is the fluid velocity
- $\boldsymbol{\chi}(\boldsymbol{r},\boldsymbol{\nu})$ and $\boldsymbol{\eta}(\boldsymbol{r},\boldsymbol{\nu})$ do depend on $\boldsymbol{\mu}$

CMF radiative transfer equation

$$\mu \frac{\partial}{\partial r} I(r,\mu,\nu) + \frac{1-\mu^2}{r} \frac{\partial}{\partial \mu} I(r,\mu,\nu) - \frac{\nu v(r)}{cr} \left(1-\mu^2 + \frac{\mu^2 r}{v(r)} \frac{dv(r)}{dr} \right) \frac{\partial}{\partial \nu} I(r,\mu,\nu) = \eta(r,\nu) - \chi(r,\nu) I(r,\mu,\nu)$$

- neglect of the transformation of $I(r,\mu,\nu)$ between individual inertial frames

Intermezzo: the interpretation

• in CMF: continuous redshift of a given photon

the Sobolev transfer equation (Castor 2004)

the Sobolev transfer equation (Castor 2004)

$$\mu \frac{\partial}{\partial r} I(r,\mu,\nu) + \frac{1-\mu^2}{r} \frac{\partial}{\partial \mu} I(r,\mu,\nu) - \frac{\nu v(r)}{cr} \left(1-\mu^2 + \frac{\mu^2 r}{v(r)} \frac{dv(r)}{dr} \right) \frac{\partial}{\partial \nu} I(r,\mu,\nu) = \eta(r,\nu) - \chi(r,\nu) I(r,\mu,\nu)$$

- possible when $\frac{\nu v(r)}{cr} \frac{\partial}{\partial \nu} I(r, \mu, \nu) \gg \frac{\partial}{\partial r} I(r, \mu, \nu)$
- dimensional arguments:

•
$$\frac{\partial}{\partial r} I(r,\mu,\nu) \sim \frac{I(r,\mu,\nu)}{r}$$
,
• $\frac{\partial}{\partial \nu} I(r,\mu,\nu) \sim \frac{I(r,\mu,\nu)}{\Delta \nu}$,
 $\Delta \nu = \nu \frac{v_{\text{th}}}{c}$ is the line Doppler width

the Sobolev transfer equation (Castor 2004)

$$\mu \frac{\partial}{\partial r} I(r,\mu,\nu) + \frac{1-\mu^2}{r} \frac{\partial}{\partial \mu} I(r,\mu,\nu) - \frac{\nu v(r)}{cr} \left(1-\mu^2 + \frac{\mu^2 r}{v(r)} \frac{dv(r)}{dr} \right) \frac{\partial}{\partial \nu} I(r,\mu,\nu) = \frac{\eta(r,\nu) - \chi(r,\nu) I(r,\mu,\nu)}{r}$$

• possible when $v(r) \gg v_{\text{th}}$

solution of the transfer equation for one line

$$-\frac{\nu v(r)}{cr} \left(1-\mu^2+\frac{\mu^2 r}{v(r)}\frac{dv(r)}{dr}\right)\frac{\partial}{\partial \nu}I(r,\mu,\nu) =$$
$$=\eta(r,\nu)-\chi(r,\nu)I(r,\mu,\nu)$$

solution of the transfer equation for one line

$$-\frac{\nu v(r)}{cr} \left(1-\mu^2+\frac{\mu^2 r}{v(r)}\frac{dv(r)}{dr}\right)\frac{\partial}{\partial \nu}I(r,\mu,\nu)=$$
$$=\eta(r,\nu)-\chi(r,\nu)I(r,\mu,\nu)$$

line absorption and emission coefficients are

$$\boldsymbol{\chi}(\boldsymbol{r},\boldsymbol{\nu}) = \frac{\boldsymbol{\pi} e^2}{m_{\rm e} c} \boldsymbol{\varphi}_{ij}(\boldsymbol{\nu}) \boldsymbol{g}_i \boldsymbol{f}_{ij} \left(\frac{\boldsymbol{n}_i(\boldsymbol{r})}{\boldsymbol{g}_i} - \frac{\boldsymbol{n}_j(\boldsymbol{r})}{\boldsymbol{g}_j}\right)$$
$$\boldsymbol{\eta}(\boldsymbol{r},\boldsymbol{\nu}) = \frac{2\boldsymbol{h}\boldsymbol{\nu}^3}{\boldsymbol{c}^2} \frac{\boldsymbol{\pi} e^2}{m_{\rm e} c} \boldsymbol{\varphi}_{ij}(\boldsymbol{\nu}) \boldsymbol{g}_i \boldsymbol{f}_{ij} \frac{\boldsymbol{n}_j(\boldsymbol{r})}{\boldsymbol{g}_j}$$

solution of the transfer equation for one line

$$-\frac{\nu v(r)}{cr} \left(1-\mu^2+\frac{\mu^2 r}{v(r)}\frac{dv(r)}{dr}\right)\frac{\partial}{\partial \nu}I(r,\mu,\nu) =$$
$$=\eta(r,\nu)-\chi(r,\nu)I(r,\mu,\nu)$$

the line opacity and emissivity are

$$\chi(r,\nu) = \chi_{L}(r)\varphi_{ij}(\nu)$$
$$\eta(r,\nu) = \chi_{L}(r)S_{L}(r)\varphi_{ij}(\nu)$$
where $\chi_{L}(r) = \frac{\pi e^{2}}{m_{e}c}g_{i}f_{ij}\left(\frac{n_{i}(r)}{g_{i}} - \frac{n_{j}(r)}{g_{j}}\right)$

solution of the transfer equation for one line

$$-\frac{\boldsymbol{\nu}\boldsymbol{v}(\boldsymbol{r})}{\boldsymbol{c}\boldsymbol{r}}\left(1-\boldsymbol{\mu}^{2}+\frac{\boldsymbol{\mu}^{2}\boldsymbol{r}}{\boldsymbol{v}(\boldsymbol{r})}\frac{\mathrm{d}\boldsymbol{v}(\boldsymbol{r})}{\mathrm{d}\boldsymbol{r}}\right)\frac{\partial}{\partial\boldsymbol{\nu}}\boldsymbol{I}(\boldsymbol{r},\boldsymbol{\mu},\boldsymbol{\nu})=$$
$$=\boldsymbol{\chi}_{\mathsf{L}}(\boldsymbol{r})\boldsymbol{\varphi}_{ij}(\boldsymbol{\nu})\left(\boldsymbol{S}_{\mathsf{L}}(\boldsymbol{r})-\boldsymbol{I}(\boldsymbol{r},\boldsymbol{\mu},\boldsymbol{\nu})\right)$$

solution of the transfer equation for one line

$$-\frac{\nu v(r)}{cr} \left(1-\mu^2+\frac{\mu^2 r}{v(r)}\frac{dv(r)}{dr}\right)\frac{\partial}{\partial\nu}I(r,\mu,\nu)=$$
$$=\chi_{\mathsf{L}}(r)\varphi_{ij}(\nu)\left(S_{\mathsf{L}}(r)-I(r,\mu,\nu)\right)$$

introduce a new variable

$$\mathbf{y} = \int_{\mathbf{\nu}}^{\infty} \mathrm{d}\mathbf{
u}' \mathbf{\mathbf{\phi}}_{ij}(\mathbf{\nu}')$$

- where
 - y = 0: the incoming side of the line
 - y = 1: the outgoing side of the line

solution of the transfer equation for one line

$$\frac{\nu v(r)}{cr} \left(1 - \mu^2 + \frac{\mu^2 r}{v(r)} \frac{dv(r)}{dr} \right) \frac{\partial}{\partial y} I(r, \mu, y) =$$
$$= \chi_{L}(r) \left(S_{L}(r) - I(r, \mu, y) \right)$$

solution of the transfer equation for one line

$$\frac{\boldsymbol{\nu}\boldsymbol{v}(\boldsymbol{r})}{\boldsymbol{c}\boldsymbol{r}}\left(1-\boldsymbol{\mu}^{2}+\frac{\boldsymbol{\mu}^{2}\boldsymbol{r}}{\boldsymbol{v}(\boldsymbol{r})}\frac{\mathrm{d}\boldsymbol{v}(\boldsymbol{r})}{\mathrm{d}\boldsymbol{r}}\right)\frac{\partial}{\partial\boldsymbol{y}}\boldsymbol{I}(\boldsymbol{r},\boldsymbol{\mu},\boldsymbol{y})=$$
$$=\boldsymbol{\chi}_{\mathsf{L}}(\boldsymbol{r})\left(\boldsymbol{S}_{\mathsf{L}}(\boldsymbol{r})-\boldsymbol{I}(\boldsymbol{r},\boldsymbol{\mu},\boldsymbol{y})\right)$$

- assumptions:
 - variables do not significantly vary with r within the "resonance zone"

$$\Rightarrow \text{ fixed } r, \frac{\partial}{\partial y} \to \frac{d}{dy}$$

• $\boldsymbol{\nu}
ightarrow \boldsymbol{
u}_0$

 \Rightarrow integration possible

solution of the transfer equation for one line

$$I(\mathbf{y}) = I_{c}(\boldsymbol{\mu}) \exp\left[-\boldsymbol{\tau}(\boldsymbol{\mu})\mathbf{y}\right] + S_{L}\left\{1 - \exp\left[-\boldsymbol{\tau}(\boldsymbol{\mu})\mathbf{y}\right]\right\}$$

- where
 - the Sobolev optical depth is

$$\boldsymbol{\tau}(\boldsymbol{\mu}) = \frac{\boldsymbol{\chi}_{\mathsf{L}}(\boldsymbol{r})\boldsymbol{c}\boldsymbol{r}}{\boldsymbol{\nu}_{0}\boldsymbol{v}(\boldsymbol{r})\left(1-\boldsymbol{\mu}^{2}+\frac{\boldsymbol{\mu}^{2}\boldsymbol{r}}{\boldsymbol{v}(\boldsymbol{r})}\frac{\mathsf{d}\boldsymbol{v}(\boldsymbol{r})}{\mathsf{d}\boldsymbol{r}}\right)}$$

• the boundary condition is $I(y = 0) = I_c(\mu)$
Intermezzo: the interpretation

• au is given by the slope $\Rightarrow au \sim \left(\frac{dv}{dr}\right)^{-1}$

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty \boldsymbol{\chi}(\boldsymbol{r}, \boldsymbol{\nu}) \boldsymbol{F}(\boldsymbol{r}, \boldsymbol{\nu}) \, \mathrm{d}\boldsymbol{\nu}$$

$$f_{\rm rad} = \frac{1}{c} \int_0^\infty d\boldsymbol{\nu} \, \boldsymbol{\chi}(\boldsymbol{r},\boldsymbol{\nu}) \oint d\Omega \, \boldsymbol{\mu} \boldsymbol{I}(\boldsymbol{r},\boldsymbol{\mu},\boldsymbol{\nu})$$

$$\boldsymbol{f}_{\text{rad}} = \frac{2\boldsymbol{\pi}}{\boldsymbol{c}} \int_0^\infty d\boldsymbol{\nu} \, \boldsymbol{\chi}_{\text{L}}(\boldsymbol{r}) \boldsymbol{\varphi}_{ij}(\boldsymbol{\nu}) \int_{-1}^1 d\boldsymbol{\mu} \, \boldsymbol{\mu} \boldsymbol{I}(\boldsymbol{r},\boldsymbol{\mu},\boldsymbol{\nu})$$

$$\boldsymbol{f}_{rad} = \frac{2\boldsymbol{\pi}\boldsymbol{\chi}_{L}(\boldsymbol{r})}{\boldsymbol{c}} \int_{0}^{1} d\boldsymbol{y} \int_{-1}^{1} d\boldsymbol{\mu} \boldsymbol{\mu} \boldsymbol{I}(\boldsymbol{r},\boldsymbol{\mu},\boldsymbol{y})$$

• the radiative force (the radial component; force per unit of volume)

$$f_{rad} = \frac{2\pi \chi_{L}(r)}{c} \int_{0}^{1} dy \times \int_{-1}^{1} d\mu \,\mu \left\{ I_{c}(\mu) \exp\left[-\tau(\mu)y\right] + S_{L} \left\{ 1 - \exp\left[-\tau(\mu)y\right] \right\} \right\}$$

where the Sobolev optical depth is

$$\boldsymbol{\tau}(\boldsymbol{\mu}) = \frac{\boldsymbol{\chi}_{\mathsf{L}}(\boldsymbol{r})\boldsymbol{c}\boldsymbol{r}}{\boldsymbol{\nu}_{0}\boldsymbol{v}(\boldsymbol{r})\left(1-\boldsymbol{\mu}^{2}+\frac{\boldsymbol{\mu}^{2}\boldsymbol{r}}{\boldsymbol{v}(\boldsymbol{r})}\frac{\mathsf{d}\boldsymbol{v}(\boldsymbol{r})}{\mathsf{d}\boldsymbol{r}}\right)}$$

• $\boldsymbol{\tau}(\boldsymbol{\mu})$ is an even function of $\boldsymbol{\mu}$

• the radiative force (the radial component; force per unit of volume)

$$\mathbf{f}_{rad} = \frac{2\boldsymbol{\pi}\boldsymbol{\chi}_{L}(\mathbf{r})}{\mathbf{c}} \int_{0}^{1} d\mathbf{y} \int_{-1}^{1} d\boldsymbol{\mu} \, \boldsymbol{\mu} \mathbf{I}_{c}(\boldsymbol{\mu}) \exp\left[-\boldsymbol{\tau}(\boldsymbol{\mu})\mathbf{y}\right]$$

• no net contribution of the emission to the radiative force (S_L is isotropic in the CMF)

 the radiative force (the radial component; force per unit of volume)

$$f_{\text{rad}} = \frac{2\pi \chi_{\text{L}}(r)}{c} \int_{-1}^{1} d\mu \, \mu I_{\text{c}}(\mu) \frac{1 - \exp\left[-\tau(\mu)\right]}{\tau(\mu)}$$

inserting

$$\boldsymbol{\tau}(\boldsymbol{\mu}) = \frac{\boldsymbol{\chi}_{\mathsf{L}}(\boldsymbol{r})\boldsymbol{c}\boldsymbol{r}}{\boldsymbol{\nu}_{0}\boldsymbol{\nu}(\boldsymbol{r})\left(1-\boldsymbol{\mu}^{2}+\frac{\boldsymbol{\mu}^{2}\boldsymbol{r}}{\boldsymbol{\nu}(\boldsymbol{r})}\frac{\mathsf{d}\boldsymbol{\nu}(\boldsymbol{r})}{\mathsf{d}\boldsymbol{r}}\right)}$$

 the radiative force (the radial component; force per unit of volume)

$$f_{\text{rad}} = \frac{2\pi\nu_0 \mathbf{v}(\mathbf{r})}{\mathbf{r}\mathbf{c}^2} \int_{-1}^{1} d\mathbf{\mu} \, \mathbf{\mu} \mathbf{I}_{\text{c}}(\mathbf{\mu}) \left[1 + \mathbf{\mu}^2 \boldsymbol{\sigma}(\mathbf{r})\right] \times \\ \times \left\{1 - \exp\left[-\frac{\mathbf{\chi}_{\text{L}}(\mathbf{r})\mathbf{c}\mathbf{r}}{\nu_0 \mathbf{v}(\mathbf{r}) \left(1 + \mathbf{\mu}^2 \boldsymbol{\sigma}(\mathbf{r})\right)}\right]\right\}$$

• where $\boldsymbol{\sigma}(\mathbf{r}) = \frac{\mathbf{r}}{\mathbf{v}(\mathbf{r})} \frac{d\mathbf{v}(\mathbf{r})}{d\mathbf{r}} - 1$

 Sobolev (1957), Castor (1974), Rybicki & Hummer (1978)

• optically thin line:

$$\frac{\boldsymbol{\chi}_{\mathsf{L}}(\boldsymbol{r})\boldsymbol{c}\boldsymbol{r}}{\boldsymbol{\nu}_{0}\boldsymbol{v}(\boldsymbol{r})\left(1+\boldsymbol{\mu}^{2}\boldsymbol{\sigma}(\boldsymbol{r})\right)}\ll 1$$

• optically thin line:

$$\frac{\boldsymbol{\chi}_{\mathsf{L}}(\boldsymbol{r})\boldsymbol{c}\boldsymbol{r}}{\boldsymbol{\nu}_{0}\boldsymbol{v}(\boldsymbol{r})\left(1+\boldsymbol{\mu}^{2}\boldsymbol{\sigma}(\boldsymbol{r})\right)}\ll 1$$

• the radiative force proportional to

$$f_{rad} \sim 1 - \exp\left[-rac{\boldsymbol{\chi}_{L}(r)cr}{\boldsymbol{\nu}_{0}\boldsymbol{v}(r)\left(1+\boldsymbol{\mu}^{2}\boldsymbol{\sigma}(r)
ight)}
ight]$$

• optically thin line:

$$\frac{\boldsymbol{\chi}_{\mathsf{L}}(\boldsymbol{r})\boldsymbol{c}\boldsymbol{r}}{\boldsymbol{\nu}_{0}\boldsymbol{v}(\boldsymbol{r})\left(1+\boldsymbol{\mu}^{2}\boldsymbol{\sigma}(\boldsymbol{r})\right)}\ll 1$$

• the radiative force proportional to

$$f_{rad} \sim 1 - \exp\left[-rac{\boldsymbol{\chi}_{L}(r)\boldsymbol{c}r}{\boldsymbol{\nu}_{0}\boldsymbol{v}(r)\left(1+\boldsymbol{\mu}^{2}\boldsymbol{\sigma}(r)
ight)}
ight]$$

 $pprox rac{\boldsymbol{\chi}_{L}(r)\boldsymbol{c}r}{\boldsymbol{\nu}_{0}\boldsymbol{v}(r)\left(1+\boldsymbol{\mu}^{2}\boldsymbol{\sigma}(r)
ight)}$

$$\boldsymbol{f}_{rad} = \frac{2\boldsymbol{\pi}}{\boldsymbol{c}} \int_{-1}^{1} d\boldsymbol{\mu} \, \boldsymbol{\mu} \boldsymbol{I}_{c}(\boldsymbol{\mu}) \boldsymbol{\chi}_{L}(\boldsymbol{r})$$

$$f_{\rm rad} = \frac{1}{c} \boldsymbol{\chi}_{\rm L}(r) \boldsymbol{F}(r)$$

$$f_{\rm rad} = rac{1}{c} \boldsymbol{\chi}_{\rm L}(\boldsymbol{r}) \boldsymbol{F}(\boldsymbol{r})$$

- optically thin radiative force proportional to the radiative flux F(r)
- optically thin radiative force proportional to the normalised line opacity \(\chi_L(r)\) (or to the density)
- the same result as for the static medium

• optically thick line:

$$\frac{\boldsymbol{\chi}_{\mathsf{L}}(\boldsymbol{r})\boldsymbol{c}\boldsymbol{r}}{\boldsymbol{\nu}_{0}\boldsymbol{v}(\boldsymbol{r})\left(1+\boldsymbol{\mu}^{2}\boldsymbol{\sigma}(\boldsymbol{r})\right)}\gg 1$$

• optically thick line:

$$\frac{\boldsymbol{\chi}_{\mathsf{L}}(\boldsymbol{r})\boldsymbol{c}\boldsymbol{r}}{\boldsymbol{\nu}_{0}\boldsymbol{v}(\boldsymbol{r})\left(1+\boldsymbol{\mu}^{2}\boldsymbol{\sigma}(\boldsymbol{r})\right)}\gg 1$$

• the radiative force proportional to

$$f_{rad} \sim 1 - \exp\left[-rac{oldsymbol{\chi}_{L}(r)cr}{oldsymbol{
u}_{0}oldsymbol{v}(r)\left(1+oldsymbol{\mu}^{2}oldsymbol{\sigma}(r)
ight)}
ight]$$

• optically thick line:

$$\frac{\boldsymbol{\chi}_{\mathsf{L}}(\boldsymbol{r})\boldsymbol{c}\boldsymbol{r}}{\boldsymbol{\nu}_{0}\boldsymbol{v}(\boldsymbol{r})\left(1+\boldsymbol{\mu}^{2}\boldsymbol{\sigma}(\boldsymbol{r})\right)}\gg 1$$

• the radiative force proportional to

$$egin{split} & m{f}_{\mathsf{rad}} \sim 1 - \exp\left[-rac{m{\chi}_{\mathsf{L}}(m{r})m{c}m{r}}{m{
u}_0m{v}(m{r})\left(1+m{\mu}^2m{\sigma}(m{r})
ight)}
ight] \ pprox 1 \end{split}$$

$$\boldsymbol{f}_{\text{rad}} = \frac{2\boldsymbol{\pi}\boldsymbol{\nu}_{0}\boldsymbol{v}(\boldsymbol{r})}{\boldsymbol{r}\boldsymbol{c}^{2}} \int_{-1}^{1} d\boldsymbol{\mu} \,\boldsymbol{\mu}\boldsymbol{I}_{\text{c}}(\boldsymbol{\mu}) \left[1 + \boldsymbol{\mu}^{2}\boldsymbol{\sigma}(\boldsymbol{r})\right]$$

$$\boldsymbol{f}_{\mathsf{rad}} = \frac{2\boldsymbol{\pi}\boldsymbol{\nu}_0\boldsymbol{v}(\boldsymbol{r})}{\boldsymbol{r}\boldsymbol{c}^2} \int_{-1}^{1} \mathsf{d}\boldsymbol{\mu}\,\boldsymbol{\mu}\boldsymbol{I}_{\mathsf{c}}(\boldsymbol{\mu})\left[1 + \boldsymbol{\mu}^2\boldsymbol{\sigma}(\boldsymbol{r})\right]$$

neglect of the limb darkening:

$$I_{c}(\boldsymbol{\mu}) = \left\{ egin{array}{c} I_{c} = ext{const.}, & \boldsymbol{\mu} \geq \boldsymbol{\mu}_{*}, \ 0, & \boldsymbol{\mu} < \boldsymbol{\mu}_{*} \end{array}
ight.$$

where $\boldsymbol{\mu}_* = \sqrt{1 - \frac{\boldsymbol{R}_*^2}{r^2}}$

$$\boldsymbol{f}_{\text{rad}} = \frac{2\boldsymbol{\pi}\boldsymbol{\nu}_{0}\boldsymbol{v}(\boldsymbol{r})}{\boldsymbol{r}\boldsymbol{c}^{2}} \int_{\boldsymbol{\mu}_{*}}^{1} d\boldsymbol{\mu} \,\boldsymbol{\mu}\boldsymbol{I}_{\text{c}} \left[1 + \boldsymbol{\mu}^{2}\boldsymbol{\sigma}(\boldsymbol{r})\right]$$

$$f_{\text{rad}} = \frac{\boldsymbol{\nu}_0 \boldsymbol{v}(\boldsymbol{r}) \boldsymbol{F}(\boldsymbol{r})}{\boldsymbol{r} \boldsymbol{c}^2} \left[1 + \boldsymbol{\sigma}(\boldsymbol{r}) \left(1 - \frac{1}{2} \frac{\boldsymbol{R}_*^2}{\boldsymbol{r}^2} \right) \right]$$

where $\boldsymbol{F} = 2\boldsymbol{\pi} \int_{\boldsymbol{\mu}_*}^1 d\boldsymbol{\mu} \, \boldsymbol{\mu} \boldsymbol{I}_{\text{c}} = \boldsymbol{\pi} \frac{\boldsymbol{R}_*^2}{\boldsymbol{r}^2} \boldsymbol{I}_{\text{c}}$

$$\boldsymbol{f}_{\mathsf{rad}} = \frac{\boldsymbol{\nu}_0 \boldsymbol{v}(\boldsymbol{r}) \boldsymbol{F}(\boldsymbol{r})}{\boldsymbol{r} \boldsymbol{c}^2} \left[1 + \boldsymbol{\sigma}(\boldsymbol{r}) \left(1 - \frac{1}{2} \frac{\boldsymbol{R}_*^2}{\boldsymbol{r}^2} \right) \right]$$

• large distance from the star: $r \gg R_*$

$$\boldsymbol{f}_{\mathsf{rad}} = \frac{\boldsymbol{\nu}_0 \boldsymbol{v}(\boldsymbol{r}) \boldsymbol{F}(\boldsymbol{r})}{\boldsymbol{r} \boldsymbol{c}^2} \left[1 + \boldsymbol{\sigma}(\boldsymbol{r}) \left(1 - \frac{1}{2} \frac{\boldsymbol{R}_*^2}{\boldsymbol{r}^2} \right) \right]$$

• large distance from the star: $r \gg R_*$

$$f_{\rm rad} \approx rac{oldsymbol{
u}_0 oldsymbol{F}(oldsymbol{r})}{oldsymbol{c}^2} rac{{
m d}oldsymbol{v}(oldsymbol{r})}{{
m d}oldsymbol{r}}$$

$$\boldsymbol{f}_{\mathsf{rad}} = \frac{\boldsymbol{\nu}_0 \boldsymbol{v}(\boldsymbol{r}) \boldsymbol{F}(\boldsymbol{r})}{\boldsymbol{r} \boldsymbol{c}^2} \left[1 + \boldsymbol{\sigma}(\boldsymbol{r}) \left(1 - \frac{1}{2} \frac{\boldsymbol{R}_*^2}{\boldsymbol{r}^2} \right) \right]$$

• large distance from the star: $r \gg R_*$

$$f_{\rm rad} \approx rac{oldsymbol{
u}_0 oldsymbol{F}(oldsymbol{r})}{oldsymbol{c}^2} rac{{
m d}oldsymbol{v}(oldsymbol{r})}{{
m d}oldsymbol{r}}$$

- optically thick radiative force proportional to the radiative flux *F*(*r*)
- optically thick radiative force proportional to $\frac{dv}{dr}$
- optically thick radiative force does not depend on the level populations or the density

 continuity and momentum equation of isothermal spherically symmetric wind

$$\frac{\partial \boldsymbol{\rho}}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(\boldsymbol{r}^2 \boldsymbol{\rho} \boldsymbol{v} \right) = 0$$

$$\frac{\partial v}{\partial t} + \rho v \frac{\partial v}{\partial r} = -a^2 \frac{\partial \rho}{\partial r} + f_{rad} - \frac{\rho G M (1 - \Gamma)}{r^2}$$

- ρ , v are the wind density and velocity
- *a* is the sound speed

 continuity and momentum equation of isothermal spherically symmetric wind

$$\frac{1}{r^2}\frac{\mathsf{d}}{\mathsf{d}r}\left(r^2\boldsymbol{\rho}\boldsymbol{v}\right)=0$$

$$ov rac{\mathrm{d}v}{\mathrm{d}r} = -a^2 rac{\mathrm{d}
ho}{\mathrm{d}r} + f_{\mathrm{rad}} - rac{
ho GM(1-\Gamma)}{r^2}$$

assumption: stationary flow

• continuity equation

$$\frac{1}{r^2}\frac{\mathsf{d}}{\mathsf{d}r}\left(r^2\rho \mathbf{v}\right) = 0 \Rightarrow \dot{\mathbf{M}} \equiv 4\pi r^2\rho \mathbf{v} = \text{const.}$$

• *M* is the wind mass-loss rate

momentum equation

$$\frac{1}{r^2}\frac{\mathsf{d}}{\mathsf{d}r}\left(r^2\rho \mathbf{v}\right) = 0 \Rightarrow \frac{\mathsf{d}\rho}{\mathsf{d}r} = -\frac{\rho}{\mathbf{v}}\frac{\mathsf{d}\mathbf{v}}{\mathsf{d}r} - \frac{2\rho}{r}$$

momentum equation:

$$\left(\mathbf{v}^{2}-\mathbf{a}^{2}\right)\frac{1}{\mathbf{v}}\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{r}} = \frac{2\mathbf{a}^{2}}{\mathbf{r}} + \frac{\mathbf{f}_{\mathrm{rad}}}{\mathbf{\rho}} - \frac{\mathbf{G}\mathbf{M}(1-\Gamma)}{\mathbf{r}^{2}}$$
$$\mathbf{v}\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{r}} = \frac{\mathbf{f}_{\mathrm{rad}}}{\mathbf{\rho}} - \frac{\mathbf{G}\mathbf{M}(1-\Gamma)}{\mathbf{r}^{2}}$$

• neglect of the gas-pressure term $a^2 \frac{d\rho}{dr} \ll f_{rad}$ (possible in the supersonic part of the wind)

momentum equation

$$\mathbf{v}\frac{\mathsf{d}\mathbf{v}}{\mathsf{d}\mathbf{r}} = \frac{\mathbf{v}_0 \mathbf{F}(\mathbf{r})}{\mathbf{\rho}\mathbf{c}^2} \frac{\mathsf{d}\mathbf{v}}{\mathsf{d}\mathbf{r}} - \frac{\mathbf{G}\mathbf{M}(1-\Gamma)}{\mathbf{r}^2}$$

- inclusion of the expression for the optically thick line force for $r \gg R_*$
- $F(r) = \frac{L_{\nu}}{4\pi r^2}$, where L_{ν} is the monochromatic stellar luminosity (constant)

momentum equation

$$\left[\mathbf{v} - \frac{\mathbf{v}_0 \mathbf{L}_{\mathbf{v}}}{4\pi r^2 \rho c^2}\right] \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{r}} = \frac{\mathbf{v}_0 \mathbf{v}(\mathbf{r}) \mathbf{L}_{\mathbf{v}}}{8\pi \rho c^2 r^3} - \frac{\mathbf{G} \mathbf{M}(1-\Gamma)}{r^2}$$

momentum equation

$$\left[\mathbf{v} - \frac{\mathbf{v}_0 \mathbf{L}_{\mathbf{v}}}{4\pi r^2 \rho c^2}\right] \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{r}} = \frac{\mathbf{v}_0 \mathbf{v}(\mathbf{r}) \mathbf{L}_{\mathbf{v}}}{8\pi \rho c^2 r^3} - \frac{\mathbf{G} \mathbf{M}(1-\Gamma)}{r^2}$$

• has a critical point

momentum equation

$$\left[\mathbf{v} - \frac{\mathbf{v}_0 \mathbf{L}_{\mathbf{v}}}{4\pi r^2 \rho c^2}\right] \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{r}} = \frac{\mathbf{v}_0 \mathbf{v}(\mathbf{r}) \mathbf{L}_{\mathbf{v}}}{8\pi \rho c^2 r^3} - \frac{\mathbf{G} \mathbf{M}(1-\Gamma)}{r^2}$$

- has a critical point
- consequently

$$\dot{\boldsymbol{M}} \equiv 4\boldsymbol{\pi} \boldsymbol{r}^2 \boldsymbol{\rho} \boldsymbol{v}(\boldsymbol{r}) = \frac{\boldsymbol{\nu}_0 \boldsymbol{L}_{\boldsymbol{\nu}}}{\boldsymbol{c}^2} \approx \frac{\boldsymbol{L}}{\boldsymbol{c}^2}$$

momentum equation

$$\left[\mathbf{v} - \frac{\mathbf{v}_0 \mathbf{L}_{\mathbf{v}}}{4\pi r^2 \rho c^2}\right] \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{r}} = \frac{\mathbf{v}_0 \mathbf{v}(\mathbf{r}) \mathbf{L}_{\mathbf{v}}}{8\pi \rho c^2 r^3} - \frac{\mathbf{G} \mathbf{M}(1-\Gamma)}{r^2}$$

- has a critical point
- consequently

$$\dot{M} \equiv 4\pi r^2 \rho v(r) = rac{v_0 L_{\nu}}{c^2} \approx rac{L}{c^2}$$

⇒ mass-loss rate due to one optically thick line approximatively equal to the "photon mass-loss rate" (*L* is stellar luminosity)

Example: α Cam

Example: α Cam

temperature T_{eff}	30 900 K
radius R *	$27.6R_\odot$
mass M	$43\mathrm{M}_\odot$
	(Lamers et al. 1995)
temperature $T_{\rm eff}$	30 900 K
---------------------------	-----------------
radius R *	$27.6R_\odot$
mass M	$43M_\odot$

• mass-loss rate due to one optically thick line $\dot{M} \approx L/c^2$

temperature $T_{\rm eff}$	30 900 K
radius R *	$27.6R_\odot$
mass M	$43M_\odot$

- mass-loss rate due to one optically thick line $\dot{M} \approx L/c^2$
- mass-loss rate due to $N_{\rm thick}$ optically thick lines $\dot{M} \approx N_{\rm thick} L/c^2$

temperature T_{eff}	30 900 K
radius R *	$27.6R_\odot$
mass M	$43M_\odot$

- mass-loss rate due to one optically thick line $\dot{M} \approx L/c^2$
- mass-loss rate due to $N_{\rm thick}$ optically thick lines $\dot{M} \approx N_{\rm thick} L/c^2$
- NLTE calculations: $N_{\text{thick}} \approx 1000$

temperature $T_{\rm eff}$	30 900 K
radius R *	$27.6R_\odot$
mass M	$43M_\odot$

- mass-loss rate due to one optically thick line $\dot{M} \approx L/c^2$
- mass-loss rate due to $N_{\rm thick}$ optically thick lines $\dot{M} \approx N_{\rm thick} L/c^2$
- NLTE calculations: $N_{\text{thick}} \approx 1000$
- $L = 4\pi\sigma R_*^2 T_{\text{eff}}^4$, $L = 620\,000\,\text{L}_{\odot}$

temperature T_{eff}	30 900 K
radius R *	$27.6R_\odot$
mass M	$43M_\odot$

- mass-loss rate due to one optically thick line $\dot{M} \approx L/c^2$
- mass-loss rate due to $N_{\rm thick}$ optically thick lines $\dot{M} \approx N_{\rm thick} L/c^2$
- NLTE calculations: $N_{\text{thick}} \approx 1000$
- $L = 4\pi\sigma R_*^2 T_{\text{eff}}^4$, $L = 620\,000\,\text{L}_{\odot}$
- $\dot{M} \approx 4 \times 10^{-5} \,\text{M}_{\odot} \,\text{yr}^{-1}$, more precise estimate: $1.5 \times 10^{-6} \,\text{M}_{\odot} \,\text{yr}^{-1}$ (Krtička & Kubát 2008)

- in reality the wind is driven by a mixture of optically thick and thin lines
 - optically thin line force

$$f_{\rm rad} = rac{1}{c} \boldsymbol{\chi}_{\rm L}(r) \boldsymbol{F}(r)$$

optically thick line force

$$f_{\rm rad} = rac{oldsymbol{
u}_0 oldsymbol{F}(oldsymbol{r})}{oldsymbol{c}^2} rac{{oldsymbol{d}} oldsymbol{v}}{{oldsymbol{d}} oldsymbol{r}}$$

- in reality the wind is driven by a mixture of optically thick and thin lines
 - optically thin line force

$$f_{\rm rad} = \frac{1}{c} \boldsymbol{\chi}_{\rm L}(r) \boldsymbol{F}(r)$$

optically thick line force

$$f_{\rm rad} = rac{oldsymbol{
u}_0 oldsymbol{F}(r)}{oldsymbol{c}^2} rac{{oldsymbol{d}} oldsymbol{v}}{{oldsymbol{d}} r}$$

• Sobolev optical depth $au_{
m S} = rac{oldsymbol{\chi}_{
m L}(r)c}{
u_0rac{{
m d}v}{{
m d}r}}$

$$f_{rad} = \frac{1}{c} \boldsymbol{\chi}_{L}(\boldsymbol{r}) \boldsymbol{F}(\boldsymbol{r}) \left(\boldsymbol{\tau}_{S}^{-1}\right)^{\boldsymbol{\alpha}}$$

where $\alpha = 0$ (thin) or $\alpha = 1$ (thick)

 in reality the wind is driven by a mixture of optically thick and thin lines

$$\Rightarrow 0 < \alpha < 1$$

- in reality the wind is driven by a mixture of optically thick and thin lines
- the radiative force in the CAK approximation (Castor, Abbott & Klein 1975)

$$\mathbf{f}_{\rm rad} = \mathbf{k} \frac{\boldsymbol{\sigma}_{\rm Th} \boldsymbol{n}_{\rm e} \boldsymbol{L}}{4\boldsymbol{\pi} \boldsymbol{r}^2 \boldsymbol{c}} \left(\frac{1}{\boldsymbol{\sigma}_{\rm Th} \boldsymbol{n}_{\rm e} \boldsymbol{v}_{\rm th}} \frac{{\rm d} \boldsymbol{v}}{{\rm d} \boldsymbol{r}} \right)^{\boldsymbol{\alpha}}$$

- where
 - k, α are constants (force multipliers)
 - $\sigma_{\rm Th}$ is the Thomson scattering cross-section
 - *n*_e is the electron number density
 - v_{th} is hydrogen thermal speed (for $T = T_{\text{eff}}$) (Abbott 1982)

- in reality the wind is driven by a mixture of optically thick and thin lines
- the radiative force in the CAK approximation (Castor, Abbott & Klein 1975)

$$f_{\rm rad} = k \frac{\sigma_{\rm Th} n_{\rm e} L}{4\pi r^2 c} \left(\frac{1}{\sigma_{\rm Th} n_{\rm e} v_{\rm th}} \frac{{\rm d} v}{{\rm d} r} \right)^{\alpha}$$

- nondimensional parameters k and α describe the line-strength distribution function (CAK, Puls et al. 2000)
- in general NLTE calculations necessary to obtain k and α (Abbott 1982)

$$\rho v \frac{\mathrm{d}v}{\mathrm{d}r} = f_{\mathrm{rad}} - \frac{\rho G M (1 - \Gamma)}{r^2}$$

$$\rho \mathbf{v} \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} \mathbf{r}} = \mathbf{k} \frac{\boldsymbol{\sigma}_{\mathrm{Th}} \mathbf{n}_{\mathrm{e}} \mathbf{L}}{4\pi r^{2} \mathbf{c}} \left(\frac{1}{\boldsymbol{\sigma}_{\mathrm{Th}} \mathbf{n}_{\mathrm{e}} \mathbf{v}_{\mathrm{th}}} \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} \mathbf{r}} \right)^{\alpha} - \frac{\rho \mathbf{G} \mathbf{M} (1 - \Gamma)}{r^{2}}$$

$$r^{2} \mathbf{v} \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} r} = \mathbf{k} \frac{\mathbf{\sigma}_{\mathrm{Th}} \mathbf{L}}{4\pi c} \frac{\mathbf{n}_{\mathrm{e}}}{\mathbf{\rho}} \left(\frac{\mathbf{\rho}}{\mathbf{n}_{\mathrm{e}}} \frac{4\pi r^{2} \mathbf{v}}{\mathbf{\sigma}_{\mathrm{Th}} \dot{\mathbf{M}} \mathbf{v}_{\mathrm{th}}} \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} r} \right)^{\alpha} - \mathbf{G} \mathbf{M} (1 - \Gamma)$$

 momentum equation with CAK line force (neglecting the gas pressure term)

$$r^{2} \mathbf{v} \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} r} = \mathbf{k} \frac{\mathbf{\sigma}_{\mathrm{Th}} \mathbf{L}}{4\pi c} \frac{\mathbf{n}_{\mathrm{e}}}{\mathbf{\rho}} \left(\frac{\mathbf{\rho}}{\mathbf{n}_{\mathrm{e}}} \frac{4\pi r^{2} \mathbf{v}}{\mathbf{\sigma}_{\mathrm{Th}} \dot{\mathbf{M}} \mathbf{v}_{\mathrm{th}}} \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} r} \right)^{\alpha} - \mathbf{G} \mathbf{M} (1 - \Gamma)$$

velocity in terms of the escape speed

$$w \equiv rac{v^2}{v_{
m esc}^2}$$
, where $v_{
m esc}^2 = rac{2GM(1-\Gamma)}{R_*}$

new radial variable

$$x \equiv 1 - \frac{R_*}{r}$$

(Owocki 2004)

 momentum equation with CAK line force (neglecting the gas pressure term)

$$1 + \boldsymbol{w}' = \boldsymbol{C} \left(\boldsymbol{w}' \right)^{\boldsymbol{\alpha}}$$

where

•
$$w' \equiv \frac{dw}{dx}$$

• $C \equiv \frac{k\sigma_{Th}L}{4\pi cGM(1-\Gamma)} \frac{n_e}{\rho} \left(\frac{\rho}{n_e} \frac{4\pi GM(1-\Gamma)}{\sigma_{Th}\dot{M}v_{th}}\right)^{\alpha}$
• $\frac{\rho}{n_e} \approx m_{H}$

algebraic equation

 momentum equation with CAK line force (neglecting the gas pressure term)

$$1 + \boldsymbol{w}' = \boldsymbol{C} \left(\boldsymbol{w}' \right)^{\boldsymbol{\alpha}}$$

 different solutions for different values of C (or mass-loss rate M)

 momentum equation with CAK line force (neglecting the gas pressure term)

• large C (small \dot{M}): two solutions

 momentum equation with CAK line force (neglecting the gas pressure term)

• small C (large \dot{M}): no solution

 momentum equation with CAK line force (neglecting the gas pressure term)

• critical value of C(M): one solution

$$1 + \boldsymbol{w}' = \boldsymbol{C} \left(\boldsymbol{w}' \right)^{\boldsymbol{\alpha}}$$

- critical (CAK) solution for a specific value of M: the only smooth solution of detailed momentum equation from the stellar surface to infinity
- CAK solution: the largest *M* possible

$$1 + \boldsymbol{w}' = \boldsymbol{C} \left(\boldsymbol{w}' \right)^{\boldsymbol{\alpha}}$$

- critical (CAK) solution for a specific value of M: the only smooth solution of detailed momentum equation from the stellar surface to infinity
- ⇒ possible to derive the wind mass-loss rate and velocity profile

$$w_{c}' = rac{oldsymbol{lpha}}{1-oldsymbol{lpha}}$$
 $\mathcal{C}_{c} = rac{(1-oldsymbol{lpha})^{oldsymbol{lpha}-1}}{oldsymbol{lpha}}$

$$w_{c}' = rac{oldsymbol{lpha}}{1-oldsymbol{lpha}}$$

$$\Rightarrow \boldsymbol{w} = \frac{\boldsymbol{\alpha}}{1-\boldsymbol{\alpha}} \boldsymbol{x} \Rightarrow \boldsymbol{v} = \boldsymbol{v}_{\infty} \left(1 - \frac{\boldsymbol{R}_{*}}{\boldsymbol{r}}\right)^{1/2}$$

• where the terminal velocity

$$m{v}_{\infty} = m{v}_{
m esc} \sqrt{rac{m{lpha}}{1-m{lpha}}}$$

$$w_{c}' = rac{oldsymbol{lpha}}{1-oldsymbol{lpha}}$$

$$\Rightarrow \boldsymbol{w} = \frac{\boldsymbol{\alpha}}{1-\boldsymbol{\alpha}} \boldsymbol{x} \Rightarrow \boldsymbol{v} = \boldsymbol{v}_{\infty} \left(1-\frac{\boldsymbol{R}_{*}}{\boldsymbol{r}}\right)^{1/2}$$

• where the terminal velocity

$$m{v}_{\infty} = m{v}_{
m esc} \sqrt{rac{m{lpha}}{1-m{lpha}}}$$

• v_{∞} scales with $v_{esc}!$

$$w_{c}' = rac{oldsymbol{lpha}}{1-oldsymbol{lpha}}$$

$$\Rightarrow \boldsymbol{w} = \frac{\boldsymbol{\alpha}}{1-\boldsymbol{\alpha}} \boldsymbol{x} \Rightarrow \boldsymbol{v} = \boldsymbol{v}_{\infty} \left(1-\frac{\boldsymbol{R}_{*}}{\boldsymbol{r}}\right)^{1/2}$$

where the terminal velocity

$$m{v}_{\infty} = m{v}_{
m esc} \sqrt{rac{m{lpha}}{1-m{lpha}}}$$

- v_{∞} scales with $v_{esc}!$
- as v_∞ of order of 100 km s⁻¹, hot star winds are strongly supersonic!

$$w_{c}' = rac{oldsymbol{lpha}}{1-oldsymbol{lpha}}$$

$$\Rightarrow \boldsymbol{w} = \frac{\boldsymbol{\alpha}}{1-\boldsymbol{\alpha}} \boldsymbol{x} \Rightarrow \boldsymbol{v} = \boldsymbol{v}_{\infty} \left(1 - \frac{\boldsymbol{R}_{*}}{\boldsymbol{r}}\right)^{1/2}$$

where the terminal velocity

$$m{v}_{\infty} = m{v}_{
m esc} \sqrt{rac{m{lpha}}{1-m{lpha}}}$$

- v_{∞} scales with $v_{esc}!$
- example: α Cam, $v_{esc} = 620$ km s⁻¹, $\alpha = 0.61$

$$w_{c}' = rac{oldsymbol{lpha}}{1-oldsymbol{lpha}}$$

$$\Rightarrow \boldsymbol{w} = \frac{\boldsymbol{\alpha}}{1-\boldsymbol{\alpha}} \boldsymbol{x} \Rightarrow \boldsymbol{v} = \boldsymbol{v}_{\infty} \left(1-\frac{\boldsymbol{R}_{*}}{\boldsymbol{r}}\right)^{1/2}$$

where the terminal velocity

$$m{v}_{\infty} = m{v}_{
m esc} \sqrt{rac{m{lpha}}{1-m{lpha}}}$$

- v_{∞} scales with $v_{esc}!$
- example: α Cam, $v_{esc} = 620 \text{ km s}^{-1}$, $\alpha = 0.61$ \Rightarrow prediction: $v_{\infty} = 780 \text{ km s}^{-1}$

$$C_{c} = \frac{(1-\alpha)^{\alpha-1}}{\alpha^{\alpha}}$$

$$\Rightarrow \quad \dot{M} = \left[\frac{4\pi m_{\rm H} G M (1-\Gamma)}{\sigma_{\rm Th}}\right]^{\frac{\alpha-1}{\alpha}} \frac{\alpha}{\nu_{\rm th} (1-\alpha)^{\frac{\alpha-1}{\alpha}}} \left(\frac{kL}{c}\right)^{\frac{1}{\alpha}}$$

$$C_{c} = \frac{(1-\alpha)^{\alpha-1}}{\alpha^{\alpha}}$$

$$\Rightarrow \quad \dot{M} = \left[\frac{4\pi m_{\rm H} G M (1-\Gamma)}{\sigma_{\rm Th}}\right]^{\frac{\alpha-1}{\alpha}} \frac{\alpha}{v_{\rm th} (1-\alpha)^{\frac{\alpha-1}{\alpha}}} \left(\frac{kL}{c}\right)^{\frac{1}{\alpha}}$$

• example: α Cam: $\dot{M} \approx 9 \times 10^{-6} \,\mathrm{M_{\odot} \, yr^{-1}}$

• inclusion of the dependence of k on the ionisation equilibrium – δ parameter (Abbott 1982)

- inclusion of the dependence of k on the ionisation equilibrium δ parameter (Abbott 1982)
- dropping of the radial streaming approximation (Pauldrach, Puls & Kudritzki 1986, Friend & Abbott 1986)

- inclusion of the dependence of k on the ionisation equilibrium δ parameter (Abbott 1982)
- dropping of the radial streaming approximation (Pauldrach, Puls & Kudritzki 1986, Friend & Abbott 1986)
- NLTE calculation of the level populations (Pauldrach 1987, Vink, de Koter & Lamers 2000, Gräfener & Hamann 2002, Krtička & Kubát 2004)

- inclusion of the dependence of k on the ionisation equilibrium δ parameter (Abbott 1982)
- dropping of the radial streaming approximation (Pauldrach, Puls & Kudritzki 1986, Friend & Abbott 1986)
- NLTE calculation of the level populations (Pauldrach 1987, Vink, de Koter & Lamers 2000, Gräfener & Hamann 2002, Krtička & Kubát 2004)
- dropping of the Sobolev approximation (Gräfener & Hamann 2008, Sander et al. 2017, Krtička & Kubát 2017, Sundqvist et al. 2019)

Comparison with observations

 nice wind theory ⇒ compare it with observations!

Comparison with observations

- nice wind theory ⇒ compare it with observations!
- time for hot chocolate (observers will do the work for us)!

Comparison with observations

- nice wind theory ⇒ compare it with observations!
- time for hot chocolate (observers will do the work for us)!?

no coffee time yet...

Comparison with observations

- nice wind theory ⇒ compare it with observations!
- time for hot chocolate (observers will do the work for us)!?
- problem: it is not possible to "measure" the wind parameters directly from observations
- ⇒ we have to work more to understand the wind spectral characteristics

Comparison with observations

- nice wind theory ⇒ compare it with observations!
- time for hot chocolate (observers will do the work for us)!?
- problem: it is not possible to "measure" the wind parameters directly from observations
- ⇒ we have to work more to understand the wind spectral characteristics
 - more theory, please!

• H α emission line of α Cam

recombination line

recombination line

recombination line

• our assumption: $H\alpha$ line is optically thin

- our assumption: $H\alpha$ line is optically thin
- number of $H\alpha$ photons emitted per unit of time

$$N_{
m Hlpha} \sim n_{
m p} n_{
m e}$$

- where
 - *n*_p is the number density of H⁺
 - $n_{\rm e}$ is the number density of free electrons

- our assumption: $H\alpha$ line is optically thin
- number of $H\alpha$ photons emitted per unit of time

 $N_{
m Hlpha} \sim n_{
m p} n_{
m e}$

• as
$$n_{
m p} \sim M$$
 and $n_{
m e} \sim M \Rightarrow N_{
m Hlpha} \sim M^2$

- our assumption: $H\alpha$ line is optically thin
- number of $H\alpha$ photons emitted per unit of time

$$N_{
m Hlpha} \sim n_{
m p} n_{
m e}$$

• as
$$\textit{n}_{\rm p} \sim \textit{M}$$
 and $\textit{n}_{\rm e} \sim \textit{M} \Rightarrow \textit{N}_{\rm H\alpha} \sim \textit{M}^2$

 \Rightarrow possibility to derive \dot{M} using NLTE models

- our assumption: $H\alpha$ line is optically thin
- number of $H\alpha$ photons emitted per unit of time

$$N_{
m Hlpha} \sim n_{
m p} n_{
m e}$$

- as $\textit{n}_{\rm p} \sim \textit{M}$ and $\textit{n}_{\rm e} \sim \textit{M} \Rightarrow \textit{N}_{\rm H\alpha} \sim \textit{M}^2$
- \Rightarrow possibility to derive \dot{M} using NLTE models
 - example: α Cam
 - our estimate: $9 \times 10^{-6} \,\mathrm{M_{\odot} \, yr^{-1}}$
 - H α line observation: $1.5 \times 10^{-6} \,\text{M}_{\odot} \,\text{yr}^{-1}$ (Puls et al. 2006)

IUE spectrum of α Cam

saturated line profile of P Cyg type

 lines of the most abundant ion of a given element

IUE spectrum of α Cam

- absorption in the wind between star and observer
- emission due to the wind around the star

IUE spectrum of α Cam

 the absorption edge originates in the wind with the highest velocity in the direction of observer

IUE spectrum of α Cam

- the absorption edge originates in the wind with the highest velocity in the direction of observer
- possibility to derive the terminal velocity v_{∞}

IUE spectrum of α Cam

IUE spectrum of α Cam

 where λ₀ is the laboratory wavelength of a given line

IUE spectrum of α Cam

- α Cam: $\Delta \lambda = 7.9 \text{ Å} \Rightarrow v_{\infty} = 1500 \text{ km s}^{-1}$
- our estimate: 780 km s⁻¹

IUE spectrum of α Cam

why is the absorption part saturated?

IUE spectrum of α Cam

why is the absorption part saturated?

 $I(\mathbf{y}) = I_{c}(\boldsymbol{\mu}) \exp\left[-\boldsymbol{\tau}(\boldsymbol{\mu})\mathbf{y}\right] + S_{L}\left\{1 - \exp\left[-\boldsymbol{\tau}(\boldsymbol{\mu})\mathbf{y}\right]\right\}$

• the emergent intensity: $\textbf{y} \rightarrow 1$

IUE spectrum of α Cam

- why is the absorption part saturated?
 - $I = I_{c}(\mu) \exp \left[-\tau(\mu)\right] + S_{L} \left\{1 \exp \left[-\tau(\mu)\right]\right\}$
- optically thick lines $\tau \gg 1$ with $S_L \ll I_c \Rightarrow I \ll I_c$

IUE spectrum of α Cam

- for saturated lines (τ ≫ 1) the absorption part of the P Cyg line profile does not depend on τ
 ⇒ determination of v_∞ possible
 - \Rightarrow determination of \dot{M} impossible

HST spectrum of HD 13268

unsaturated line profile of P Cyg type

HST spectrum of HD 13268

$$oldsymbol{ au}(oldsymbol{\mu}=1) = rac{oldsymbol{\chi}_{\mathsf{L}}oldsymbol{c}}{oldsymbol{
u}_0} \left(rac{\mathsf{d}oldsymbol{v}}{\mathsf{d}oldsymbol{r}}
ight)^{-1}$$

HST spectrum of HD 13268

HST spectrum of HD 13268

 $\boldsymbol{\tau}(\boldsymbol{\mu}=1) = \frac{\boldsymbol{\pi}\boldsymbol{e}^2}{\boldsymbol{m}_{\rm e}\boldsymbol{c}}\boldsymbol{\lambda}_{ij}\boldsymbol{f}_{ij}\boldsymbol{n}_i(\boldsymbol{r})\left(\frac{{\rm d}\boldsymbol{v}}{{\rm d}\boldsymbol{r}}\right)^{-1}$

HST spectrum of HD 13268

- Z_C is the carbon number density relatively to H
- q_{CIV} is the ionisation fraction of CIV

HST spectrum of HD 13268

• our order-of-magnitude approximations: $v \rightarrow v_{\infty}, r \rightarrow R_*, dv/dr \rightarrow v_{\infty}/R_*$

HST spectrum of HD 13268

 \Rightarrow from unsaturated wind line profiles possible to derive $q_{\text{CIV}}\dot{M}$
Observations: P Cyg lines II.

HST spectrum of HD 13268

- in our case $q_{\rm CIV}\dot{M} = 4 \times 10^{-10} \,{\rm M}_{\odot} \,{\rm yr}^{-1}$
- M can be derived with a knowledge of q_{CIV}

• X-ray spectrum θ^1 Ori C

(CHANDRA, Schulz et al. 2003)

- X-ray emission of hot stars consists of numerous lines of highly excited elements (N VI, O VII, Fe XXIV, ...)
- signature of a presence of gas with temperatures of the order 10⁶ K
- X-ray emission originates in the wind
 - how?

- problem:
 - the wind temperature is of the order of the stellar effective temperature – 10⁴ K (as expected from the observed ionisation structure and as derived from NLTE models, e.g., Drew 1989)
 - how can such gas emit X-ray radiation with typical temperatures $\sim 10^6\,{\rm K?}$

- problem:
 - the wind temperature is of the order of the stellar effective temperature – 10⁴ K
 - how can such gas emit X-ray radiation with typical temperatures $\sim 10^6\,{\rm K}?$
- solution:
 - most of the wind material is "cool" with temperatures of order of 10⁴ K
 - only a very small fraction of the wind is very hot $\sim 10^6\,{\rm K}$
 - the "hot" material quickly cools down (radiatively)

- problem:
 - the wind temperature is of the order of the stellar effective temperature – 10⁴ K
 - how can such gas emit X-ray radiation with typical temperatures $\sim 10^6\,{\rm K}?$
- solution:
 - most of the wind material is "cool" with temperatures of order of 10⁴ K
 - only a very small fraction of the wind is very hot $\sim 10^6\,{\rm K}$
 - the "hot" material quickly cools down (radiatively)
- further problem: how is this possible?

the radiative transfer in the comoving frame

the absorption profile in the comoving frame

• the line force

 v_0

the line force after a small change of the velocity

 ⇒ hydrodynamical simulations are necessary to describe the instability in detail (Owocki et al. 1988, Feldmeier et al. 1997, Runacres & Owocki 2002)

 hydrodynamical simulations (Feldmeier et al. 1997)

 hydrodynamical simulations are able to explain the main properties of X-ray emission of hot stars

2D structure of wind due to line-driven wind instability

(Sundqvist et al. 2018)

Stars in HR diagram

• stars with $M \gtrsim 15 \,\mathrm{M}_{\odot}$ have strong winds basically during all evolutionary phases

Importance of hot star winds I.

- stars more massive than $M\gtrsim 20\,M_{\odot}$ have strong winds basically during all evolutionary phases
- the duration of the main-sequence phase of massive stars is about 10⁶ yr
- during this time massive stars lose mass at the rate of the order of $10^{-6}\,M_\odot\,yr^{-1}$
- a significant part of stellar mass can be lost due to the winds
- most significant uncertainties of evolution of binary black hole merger progenitors connected with mass-loss (Abbott et al. 2017)

 the evolutionary phases connected with the wind

- the evolutionary phases connected with the wind
- Wolf-Rayett stars
 - hot stars with very strong wind (mass-loss rate could be of the order of 10^{-5} M $_{\odot}$ yr⁻¹)
 - wind starts already in the stellar atmosphere
 - spectrum dominated by emission lines
 - enhanced abundance of nitrogen and/or carbon and oxygen

- the evolutionary phases connected with the wind
- Wolf-Rayett stars
 - how can these stars originate?

- the evolutionary phases connected with the wind
- Wolf-Rayett stars
 - during the stellar evolution the core abundance of nitrogen (hydrogen burning) and carbon+oxygen (helium burning) increases

- the evolutionary phases connected with the wind
- Wolf-Rayett stars
 - during the stellar evolution the core abundance of nitrogen (hydrogen burning) and carbon+oxygen (helium burning) increases
 - stellar wind blows out the hydrogen-rich stellar envelope and expose nitrogen or carbon+oxygen rich core

- the evolutionary phases connected with the wind
- Wolf-Rayett stars
 - during the stellar evolution the core abundance of nitrogen (hydrogen burning) and carbon+oxygen (helium burning) increases
 - stellar wind blows out the hydrogen-rich stellar envelope and expose nitrogen or carbon+oxygen rich core
 - \Rightarrow Wolf-Rayett stars

- planetary nebulae
 - during the AGB stage of solar-like stars $(M \approx 1 \, M_{\odot})$ the star loses a significant part of its mass via slow ($\sim 10 \, \text{km s}^{-1}$) high-density wind
 - the hot degenerated core is exposed
 - during this stage the star has fast low-density line-driven wind
 - ⇒ planetary nebula: interaction of slow high-density and fast low-density winds

planetary nebulae

- hot star wind influence also the interstellar environment
 - enrichment of the interstellar medium
 - momentum input to the interstellar medium
 - is an important source of galactic cosmic ray particles

(e.g., Dale & Bonnell 2008, Aharonian et al. 2018)

More informations (book, reviews)

- Lamers, H. J. G. L. M. & Cassinelli, J. P., 1999, Introduction to Stellar Winds (Cambridge: Cambridge Univ. Press)
- Puls, J., Vink, J. S., Najarro, F. 2008, Mass loss from hot massive stars, AA&ARv, 16, 209
- Owocki, S. P. 2004, EAS Publications Series, Vol. 13, Evolution of Massive Stars, 163
- Vink, Jorick S., 2021, Theory and Diagnostics of Hot Star Mass Loss, arXiv:2109.08164
- Krtička, J., Kubát, J. 2007, Active OB-Stars (San Francisco: ASP Conf. Ser), 153