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What is Machine Learning?

Machine Learning (ML)
@ Arthur Samuel (1959)

© computer algorithms that improve automatically through experience

B Tom Mitchell: Machine Learning (1997)
© part of artificial intelligence (Al)

© ML builds a model based on sample data in order to make predictions or
decisions without being explicitly programmed to do so
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Types of Artificial Intelligence

General Al Narrow Al
© hypothetical ability © weak Al / extended Al
to understand or learn © specializes in one area

any intellectual task

that a human being can © solves one particular problem

— . « Examples
‘= Tests for confirming Al
¥ spam email filtering

%) The Turing test . ) .
g JJ music/movies recommendations

® The Coffee test
@ The Robot College Student Test
M The Employment Test

%% autonomous vehicles



Machine learning: Part of Artificial Intelligence

Artificial intelligence Data science




How a machine can learn?

Supervised learning Unsupervised learning
- we have a dataset of examples with - we have examples without any
related targets (desired results) associated targets
« learning from examples + the model has to determine the data
patterns

« classification
* regression « clustering
+ principal components analysis
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Richard Feynman (1918 - 1988)

A you don't know the rules of the game, but you're
allowed to look at the board from time to time

L]

from these observations, you try to figure out what
the rules are

W You might discover that when there’s only one bishop
around on the board, that the bishop maintains its
color or that it moves on a diagonal

Data-driven approach

We can learn physical laws from
observations «— data
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AlphaGo

- Go is an abstract strategy board game for two players

eCeo
O O
+Q + AlphaGo
+ in 2015 the original AlphaGo became the first O.O.O

computer program to beat a human professional Go
player

in 2017 AlphaGo beat the number one ranked player in
the world in a three-game match

© AlphaGo algorithm finds its moves based on
knowledge previously acquired by ML, specifically by
an artificial neural network both from human and
computer play

+ a neural network is trained to identify the best moves
and the winning percentages of these moves



Machine Learning Lecture



Lecture plan

© Simple models: © neural networks and deep learning:
- linear regression + feed forward neural network
- classification algorithms - convolutional neural network

- autoencoder
© Unsupervised data processing:

« principal components analysis (PCA) © Machine Learning for time series
« clustering - forecasting
« classification

- anomaly detection
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& lan Goodfellow et al.: Deep Learning, MIT Press
https://www.deeplearningbook.org/

E F. Chollet: Deep learning v jazyku Python. Knihovny Keras, Tensorflow, Grada (2019)

E A. Geron: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly Media (2019)

& T. M. Mitchell: Machine learning, McGraw-Hill Science/Engineering/Math (1997)
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A P. Mehta et al: A High-Bias, Low-Variance Introduction to Machine Learning for
Physicists, Physics Reports 810, 1 (2019)
https://arxiv.org/abs/1803.08823

Al S. Alexander et al.: The Physics of Machine Learning: An Intuitive Introduction for
the Physical Scientist, preprint (2021)
https://arxiv.org/abs/2112.00851

WA G. Carleo et al.: Machine learning and the physical sciences,
Rev. Mod. Phys. 91, 045002 (2019)
https://arxiv.org/abs/1903.10563
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Nature Physics 16, 602 (2020)

& A. Tanaka et al.: Deep Learning and Physics

10



@

Sefwre
& puthon’
Py o &
ﬁ’i: NumPy
|:5| pandas f

TensorFlow



* Jupyter
jupyter.org

jupyter S—

www.metacentrum.cz

¢ JupyterHub
. jupyter.cloud.metacentrum.cz
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Machine learning is an optimization problem



Optimization problem

« Find global minimum of a multimensional function f(x), where = (z1,z2,...,2,)
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Linear and Polynomial Regression



Linear regression

Linear regression

9 = wo +wix1 + Waks + ... WnTy = fuw(x) = wTx (model)
- input: 7 = (zo, z1,x2,...,2s), Where zp = 1
- weigths: w’ = (wo, w1, ws, ..., wy), where wy is bias

Mean square error

m
1 i .
Lo — E () _ @ loss function
m 2 ) ( )
- trainig dataset: X = (), 2@ ... (™) is an input matrix, and
y= (Y, 4@, ..., y™)is avector of target values

© Our task: find w components in order to minimize £, on the given training dataset (X, y)

u



J= fulz) = w'e

model

fuw hypotesis function
(X,y) training dataset
z® k-th sample / instance’s feature vector
acl(-k) i-th feature
y ™ k-th target

2™ cF =1 xIy x --- x I,

I is the feature space

n number of features / dimension of the feature space
7 predicted value

w; j-th model parameter

wo bias term

loss function

Machine learning terminology
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Linear Regression

Normal equation
w'=(X"X)"' X"y

< w* minimizes the mean square error

Pseudoinverse
w' =Xy
+ pseudoinverse or Moore-Penrose
inverse X
- Singular value decomposition (SVD):
X=UxXVT
- pseudoinverse Xt = v 2t UT



Linear Regression

Normal equation Batch gradient descent
w* = (XTX)*1 Xy OLw 2 — ) )\ .(3)
- o = 2 (e =y af
« w” minimizes the mean square error J i—1
Pseudoinverse OLow
8w0
w' =Xy Lo
+ pseudoinverse or Moore-Penrose Voo Low = owr | _ 2 XT(Xw—y)
inverse X+ m
- Singular value decomposition (SVD):
X=UsVT OLw
. Own,
- pseudoinverse Xt = v 2t UT
W 4w — N VLl (update)

* Learningrate: 0 < n <« 1



Gradient Descent

- function fu(x)

« parameters w = (wo, w1, ..., ws,)
- GD update pee
energy|
w 4 W — NV fw (GD) _ minimum
A —energy
» learningrate 0 < n <« 1 . _ P
basin of attraction

A problem with local minima
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Important Notes on Gradient Descent

© Linear Regression model is a convex function
« there are no local minima, just one global minimum
* itis a continuous function with a slope that never changes abruptly
® Gradient Descent is guaranteed to approach arbitrarily close the global minimum.

© properly set the learning rate n: not too small, not too large

© When using regularization, always scale your data

& Standardize features by removing the mean and scaling to unit variance.
« For any sample z of the training set calculate
2= (v —u)/s (Standard Scaler)

where u is the mean of the training samples and s is the standard deviation of the training
samples



Stochastic Gradient Descent

A in Batch GD it takes a lot of computational time to calculate £., (X, y), especially, when the
number of examples in X is large

Stochastic Gradient Descent (SGD)
+ we do not use the whole batch for calculating L.,

- we pick just one random instance from X

© SGD is faster than Batch GD

© can avoid local minima (finds global minimum)

@ less regular (never settles down in the minimum)

@ some instances may be picked several times, while others may not be picked at all

@ irregularity of SGD can be solved by learning schedule: gradually decrease n



Mini-Batch Gradient Descent

Mini-Batch Gradient Descent

+ calculate gradient on a small random set of instances of X

© more regular than SGD
© Mini-batch GD can be run in parallel

© Mini-batch GD has an advantage on GPUs where matrix operations are optimized

20



Gradient Descent Methods

Batch Gradient Descent Mini-Batch Gradient Descent

@

Figure source: analyticsvidhya.com
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Linear Regression using Gradient Descent

- gradient descent

n=0.02 n=0.1 n=0.5

22



Linear Regression using Gradient Descent

- gradient descent

n=0.02 n=0.1 n=0.5

- stochastic gradient descent n(¢) = 5/(t + 50)
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Polynomial Regression: add polynomial features

suppose a 1-dimensional dataset X = {—3, -2, 1,0, 1,2,3} and y with measured values

with Linear Regression one can fit the data as

y=ax+b (1D Linear Regression)

if you assume that you need a higher degree polynomial curve to fit the data you can add
polynomial feature

in case of 2-nd degree polynomial one can extend the data to two dimensions
X2 = {(_37 9)7 (_274)7 (_17 1)7 (070)7 (17 1)7 (27 4), (37 9)}

then we can fit the data using Linear Regression as

y=amw +bxs+c (2D Linear Regression)

which is
y=bz’+azx+c (Polynomial Regression)

23



Polynomial Regression

10 -
—— Predictions

24



Higher degree polynomials

10

— 300

® n =1 underfitting
@ n = 300 overfitting

® =2 bestfit
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Learning Curves

Loss

underfitting

Linear regression (n=1)
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The Bias/Variance Trade-off

© Model's generalization error can be expressed as a sum of three errors:

« Bias: error due to a wrong assumption.
A high-bias model is likely to underfit the training data.

< adding more training examples does not help. You need to use more complex model.

« Variance: error due to the model’s excessive sensitivity.
Model with high variance is likely to overfit the trainig data.

{

use more training data or reduce number of the fitting parameters.

I

use regularized models.

« Irreducible error: error due to noise in the data.

< It can be avoided by cleaning up the data (fix the data sources, such as broken detectors, or
remove outliers).
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Take Home Messages

© training a ML model means to solve an optimization problem

< we minimize the loss function by setting the model’s
parameters

© Stochastic Gradient Descent is an efficient way of training

- for Linear Regression it guarantees finding the global minimum

© we have to make a trade-off between bias and variance errors
in order to decrease the generalization error

+ we need to analyze the the training process: learning curves
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