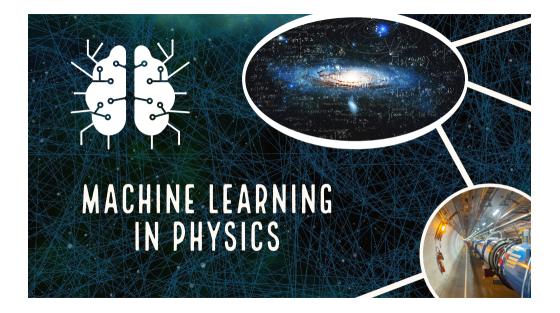
Machine Learning in Physics

Selected chapters on astrophysics

Pavel Baláž & Martin Žonda

Department of Condensed Matter Physics, Charles University, Prague



👜 Arthur Samuel (1959)

- 👜 Arthur Samuel (1959)
- S computer algorithms that improve automatically through experience

Tom Mitchell: Machine Learning (1997)

- 👜 Arthur Samuel (1959)
- computer algorithms that improve automatically through experience
 Tom Mitchell: Machine Learning (1997)

- 👜 Arthur Samuel (1959)
- computer algorithms that improve automatically through experience
 Tom Mitchell: Machine Learning (1997)
- part of artificial intelligence (AI)
- ML builds a model based on sample data in order to make predictions or decisions without being *explicitly programmed* to do so

General AI

hypothetical ability

to understand or learn any intellectual task that a human being can

- 🔚 Tests for confirming AI
 - 🔍 The Turing test
 - 👤 The Coffee test
 - 💼 The Robot College Student Test
 - in The Employment Test

General AI

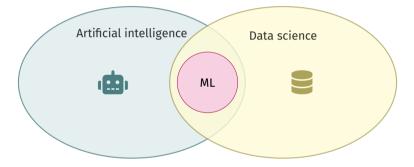
hypothetical ability

to understand or learn any intellectual task that a human being can

- 🔚 Tests for confirming AI
 - 🔍 The Turing test
 - 💻 The Coffee test
 - 👜 The Robot College Student Test
 - in The Employment Test

Narrow Al

- weak AI / extended AI
- specializes in one area
- Solves one particular problem
 - Examples
 - 🔽 spam email filtering
 - music/movies recommendations
 - 츎 autonomous vehicles

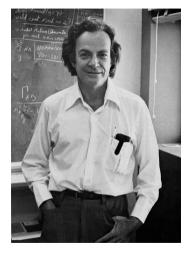


Supervised learning

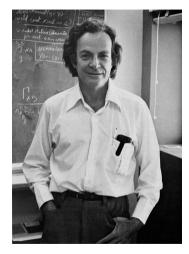
- we have a dataset of examples with related targets (desired results)
- learning from examples
- classification
- regression

Unsupervised learning

- we have examples without any associated targets
- the model has to determine the data patterns
- clustering
- principal components analysis

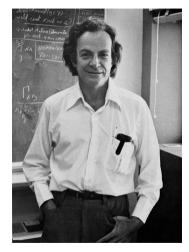


Richard Feynman (1918 - 1988)



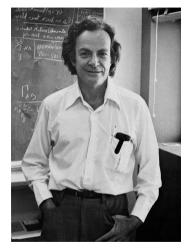
you don't know the rules of the game, but you're allowed to look at the board from time to time

Richard Feynman (1918 - 1988)



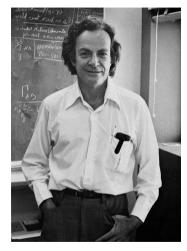
Richard Feynman (1918 - 1988)

- you don't know the rules of the game, but you're allowed to look at the board from time to time
- from these observations, you try to figure out what the rules are



Richard Feynman (1918 - 1988)

- you don't know the rules of the game, but you're allowed to look at the board from time to time
- from these observations, you try to figure out what the rules are
- You might discover that when there's only one bishop around on the board, that the bishop maintains its color or that it moves on a diagonal



Richard Feynman (1918 - 1988)

- you don't know the rules of the game, but you're allowed to look at the board from time to time
- from these observations, you try to figure out what the rules are
- You might discover that when there's only one bishop around on the board, that the bishop maintains its color or that it moves on a diagonal

Data-driven approach

We can learn physical laws from observations \iff data

• Go is an abstract strategy board game for two players

- Go is an abstract strategy board game for two players
- in 2015 the original AlphaGo became the first computer program to beat a human professional Go player

- · Go is an abstract strategy board game for two players
- in 2015 the original AlphaGo became the first computer program to beat a human professional Go player
- in 2017 AlphaGo beat the number one ranked player in the world in a three-game match

- · Go is an abstract strategy board game for two players
- in 2015 the original AlphaGo became the first computer program to beat a human professional Go player
- in 2017 AlphaGo beat the number one ranked player in the world in a three-game match
- AlphaGo algorithm finds its moves based on knowledge previously acquired by ML, specifically by an artificial neural network both from human and computer play

- · Go is an abstract strategy board game for two players
- in 2015 the original AlphaGo became the first computer program to beat a human professional Go player
- in 2017 AlphaGo beat the number one ranked player in the world in a three-game match
- AlphaGo algorithm finds its moves based on knowledge previously acquired by ML, specifically by an artificial neural network both from human and computer play
 - a neural network is trained to identify the best moves and the winning percentages of these moves

Machine Learning Lecture

Simple models:

- linear regression
- classification algorithms
- Unsupervised data processing:
 - principal components analysis (PCA)
 - clustering

- neural networks and deep learning:
 - feed forward neural network
 - convolutional neural network
 - autoencoder
- Machine Learning for time series
 - forecasting
 - classification
 - anomaly detection

- Ian Goodfellow et al.: Deep Learning, MIT Press https://www.deeplearningbook.org/
- 📒 F. Chollet: Deep learning v jazyku Python. Knihovny Keras, Tensorflow, Grada (2019)
- A. Geron: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly Media (2019)
- T. M. Mitchell: Machine learning, McGraw-Hill Science/Engineering/Math (1997)

Literatura

- P. Mehta et al: A High-Bias, Low-Variance Introduction to Machine Learning for Physicists, Physics Reports 810, 1 (2019) https://arxiv.org/abs/1803.08823
- S. Alexander et al.: The Physics of Machine Learning: An Intuitive Introduction for the Physical Scientist, preprint (2021) https://arxiv.org/abs/2112.00851
- G. Carleo et al.: Machine learning and the physical sciences, Rev. Mod. Phys. 91, 045002 (2019) https://arxiv.org/abs/1903.10563
- L. Zdeborová: Understanding deep learning is also a job for physicists, Nature Physics 16, 602 (2020)
- A. Tanaka et al.: Deep Learning and Physics

- Jupyter jupyter.org
- Metacentrum

www.metacentrum.cz

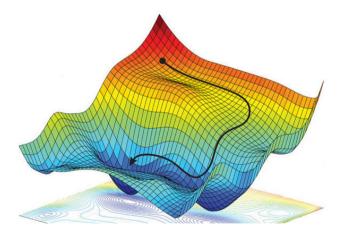
JupyterHub

jupyter.cloud.metacentrum.cz

Machine learning is an optimization problem

Optimization problem

• Find global minimum of a multimensional function f(x), where $x = (x_1, x_2, \dots, x_n)$



Linear and Polynomial Regression

Linear regression

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots w_n x_n = f_w(x) = w^{\mathsf{T}} x$$
 (model)

• input:
$$x^{T} = (x_0, x_1, x_2, \dots, x_n)$$
, where $x_0 = 1$

• weights: $w^{\intercal} = (w_0, w_1, w_2, \dots, w_n)$, where w_0 is bias

Mean square error

$$\mathcal{L}_{\boldsymbol{w}}(\boldsymbol{X}, \boldsymbol{y}) = \frac{1}{m} \sum_{i=1}^{m} \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)} \right)^2$$
 (loss function)

• trainig dataset: $X = (x^{(1)}, x^{(2)}, \dots, x^{(m)})$ is an input matrix, and $y = (y^{(1)}, y^{(2)}, \dots, y^{(m)})$ is a vector of target values

 $igodoldsymbol{O}$ Our task: find w components in order to minimize \mathcal{L}_w on the given training dataset (X,y)

$\hat{y} = f_{\boldsymbol{w}}(\boldsymbol{x}) = \boldsymbol{w}^{T} \boldsymbol{x}$	model
$f_{\boldsymbol{w}}$	hypotesis function
$(oldsymbol{X},oldsymbol{y})$	training dataset
$oldsymbol{x}^{(k)}$	k-th sample / instance's feature vector
$x_i^{(k)}$	<i>i</i> -th feature
$y^{(k)}$	<i>k</i> -th target
$oldsymbol{x}^{(k)} \in \mathbb{F} = \mathbb{I}_1 imes \mathbb{I}_2 imes \cdots imes \mathbb{I}_n$	${\mathbb F}$ is the feature space
n	number of features / dimension of the feature space
\hat{y}	predicted value
w_j	<i>j</i> -th model parameter
w_0	bias term
$\mathcal{L}_{oldsymbol{w}}(oldsymbol{X},oldsymbol{y})$	loss function

Normal equation

 $oldsymbol{w}^* = \left(oldsymbol{X}^{\intercal}oldsymbol{X}
ight)^{-1}oldsymbol{X}^{\intercal}oldsymbol{y}$

+ w^* minimizes the mean square error

Pseudoinverse

$$w^* = X^+ y$$

- pseudoinverse or Moore-Penrose inverse X^+
- Singular value decomposition (SVD): $X = U \Sigma V^{\mathsf{T}}$
- pseudoinverse $X^+ = V \, \Sigma^+ \, U^{\intercal}$

Normal equation

 $oldsymbol{w}^* = \left(oldsymbol{X}^{\intercal}oldsymbol{X}
ight)^{-1}oldsymbol{X}^{\intercal}oldsymbol{y}$

+ w^* minimizes the mean square error

Pseudoinverse

$$w^* = X^+ y$$

- pseudoinverse or Moore-Penrose inverse X⁺
- Singular value decomposition (SVD): $X = U \, \Sigma \, V^{\mathrm{T}}$
- pseudoinverse $X^+ = V \, \Sigma^+ \, U^{\intercal}$

Batch gradient descent

 ∇

$$\frac{\partial \mathcal{L}_{\boldsymbol{w}}}{\partial w_j} = \frac{2}{m} \sum_{i=1}^m \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}^{(i)} - y^{(i)} \right) \, x_j^{(i)}$$

$$\mathbf{T}_{\boldsymbol{w}}\mathcal{L}_{\boldsymbol{w}} = \begin{pmatrix} \frac{\partial \mathcal{L}_{\boldsymbol{w}}}{\partial w_0} \\ \frac{\partial \mathcal{L}_{\boldsymbol{w}}}{\partial w_1} \\ \vdots \\ \frac{\partial \mathcal{L}_{\boldsymbol{w}}}{\partial w_n} \end{pmatrix} = \frac{2}{m} \mathbf{X}^{\mathsf{T}} \left(\mathbf{X} \boldsymbol{w} - \boldsymbol{y} \right)$$

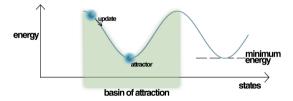
$$w \leftarrow w - \eta \,
abla_w \mathcal{L}_w$$
 (update)

+ Learning rate: $0 < \eta \ll 1$

- function $f_{w}(x)$
- parameters $\boldsymbol{w} = (w_0, w_1, \dots, w_n)$
- GD update

$$oldsymbol{w} \leftarrow oldsymbol{w} - \eta \,
abla_{oldsymbol{w}} f_{oldsymbol{w}}$$
 (GD

• learning rate $0 < \eta \ll 1$



🛕 problem with local minima

Important Notes on Gradient Descent

- Linear Regression model is a convex function
 - there are no local minima, just one global minimum
 - it is a continuous function with a slope that never changes abruptly
- **9** Gradient Descent is guaranteed to approach arbitrarily close the global minimum.

Important Notes on Gradient Descent

- Linear Regression model is a convex function
 - · there are no local minima, just one global minimum
 - it is a continuous function with a slope that never changes abruptly
- **9** Gradient Descent is guaranteed to approach arbitrarily close the global minimum.

 \bigcirc properly set the learning rate η : not too small, not too large

Important Notes on Gradient Descent

- Linear Regression model is a convex function
 - there are no local minima, just one global minimum
 - it is a continuous function with a slope that never changes abruptly
- **9** Gradient Descent is guaranteed to approach arbitrarily close the global minimum.

 \bigcirc properly set the learning rate η : not too small, not too large

- When using regularization, always scale your data
- Standardize features by removing the mean and scaling to unit variance.
 - For any sample x of the training set calculate

$$x = (x - u)/s$$
 (Standard Scaler)

where u is the mean of the training samples and s is the standard deviation of the training samples

Stochastic Gradient Descent

A in Batch GD it takes a lot of computational time to calculate $\mathcal{L}_w(X, y)$, especially, when the number of examples in X is large

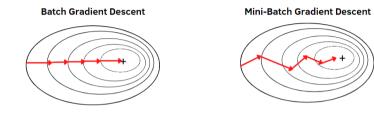
Stochastic Gradient Descent (SGD)

- we do not use the whole batch for calculating \mathcal{L}_w
- we pick just one random instance from $oldsymbol{X}$
- GD is faster than Batch GD
- 🔁 can avoid local minima (finds global minimum)
- less regular (never settles down in the minimum)
- some instances may be picked several times, while others may not be picked at all
- igoplus irregularity of SGD can be solved by learning schedule: gradually decrease η

Mini-Batch Gradient Descent

- calculate gradient on a small random set of instances of X
- more regular than SGD
- Mini-batch GD can be run in parallel
- G Mini-batch GD has an advantage on GPUs where matrix operations are optimized

Gradient Descent Methods



Stochastic Gradient Descent

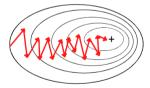
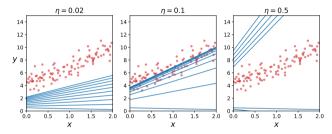


Figure source: analyticsvidhya.com

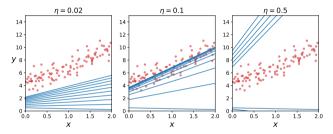
Linear Regression using Gradient Descent

• gradient descent

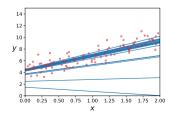


Linear Regression using Gradient Descent

• gradient descent



• stochastic gradient descent $\eta(t) = 5/(t+50)$



Polynomial Regression: add polynomial features

- suppose a 1-dimensional dataset $X = \{-3, -2, -1, 0, 1, 2, 3\}$ and y with measured values
- with Linear Regression one can fit the data as

y = a x + b (1D Linear Regression)

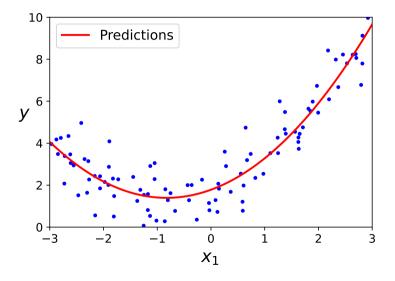
- if you assume that you need a higher degree polynomial curve to fit the data you can add polynomial feature
- in case of 2-nd degree polynomial one can extend the data to two dimensions $X_2 = \{(-3,9), (-2,4), (-1,1), (0,0), (1,1), (2,4), (3,9)\}$
- then we can fit the data using Linear Regression as

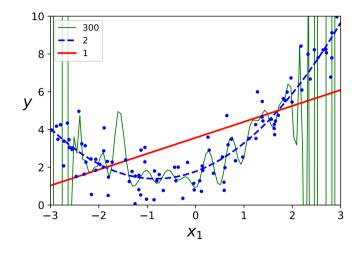
 $y = a x_1 + b x_2 + c$ (2D Linear Regression)

which is

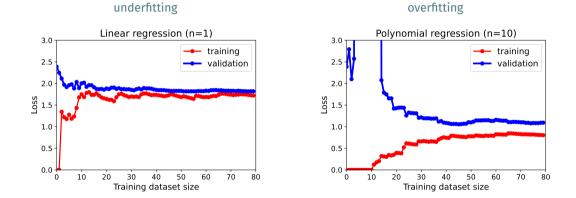
$$y = b x^2 + a x + c$$
 (Polynomial Regression)

Polynomial Regression





(a) n = 1 underfitting (a) n = 300 overfitting (b) n = 2 best fit



26

S Model's generalization error can be expressed as a sum of three errors:

- **Bias:** error due to a wrong assumption. A high-bias model is likely to underfit the training data.
- \hookrightarrow adding more training examples does not help. You need to use more complex model.
 - Variance: error due to the model's excessive sensitivity. Model with high variance is likely to overfit the trainig data.
- \hookrightarrow use more training data or reduce number of the fitting parameters.
- \hookrightarrow use regularized models.
 - Irreducible error: error due to noise in the data.
- \hookrightarrow It can be avoided by cleaning up the data (fix the data sources, such as broken detectors, or remove outliers).

training a ML model means to solve an optimization problem

- we minimize the loss function by setting the model's parameters
- Stochastic Gradient Descent is an efficient way of training
 - for Linear Regression it guarantees finding the global minimum
- we have to make a trade-off between bias and variance errors in order to decrease the generalization error
 - we need to analyze the the training process: learning curves