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What is Machine Learning?

Machine Learning (ML)

® Arthur Samuel (1959)

 computer algorithms that improve automatically through experience
Y Tom Mitchell: Machine Learning (1997)

 part of artificial intelligence (AI)

 ML builds a model based on sample data in order to make predictions or
decisions without being explicitly programmed to do so
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Types of Artificial Intelligence

General AI

 hypothetical ability
to understand or learn
any intellectual task
that a human being can

: Tests for confirming AI
Ù The Turing test
Ï The Co�ee test
® The Robot College Student Test
æ The Employment Test

Narrow AI

 weak AI / extended AI
 specializes in one area
 solves one particular problem

• Examples
� spam email filtering
E music/movies recommendations
p autonomous vehicles
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Machine learning: Part of Artificial Intelligence

Artificial intelligence Data science

ML® ò
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How a machine can learn?

Supervised learning

• we have a dataset of examples with
related targets (desired results)

• learning from examples

• classification
• regression

Unsupervised learning

• we have examples without any
associated targets

• the model has to determine the data
patterns

• clustering
• principal components analysis
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What is Understanding? Scientific process is analogous to discovering chess¦

Richard Feynman (1918 – 1988)

ª you don’t know the rules of the game, but you’re
allowed to look at the board from time to time

§ from these observations, you try to figure out what
the rules are

© You might discover that when there’s only one bishop
around on the board, that the bishop maintains its
color or that it moves on a diagonal

Data-driven approach

We can learn physical laws from
observations⇐⇒ data
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AlphaGo

• Go is an abstract strategy board game for two players

• in 2015 the original AlphaGo became the first
computer program to beat a human professional Go
player

• in 2017 AlphaGo beat the number one ranked player in
the world in a three-game match

) AlphaGo algorithm finds its moves based on
knowledge previously acquired by ML, specifically by
an artificial neural network both from human and
computer play

• a neural network is trained to identify the best moves
and the winning percentages of these moves

AlphaGo

7



AlphaGo

• Go is an abstract strategy board game for two players

• in 2015 the original AlphaGo became the first
computer program to beat a human professional Go
player

• in 2017 AlphaGo beat the number one ranked player in
the world in a three-game match

) AlphaGo algorithm finds its moves based on
knowledge previously acquired by ML, specifically by
an artificial neural network both from human and
computer play

• a neural network is trained to identify the best moves
and the winning percentages of these moves

AlphaGo

7



AlphaGo

• Go is an abstract strategy board game for two players

• in 2015 the original AlphaGo became the first
computer program to beat a human professional Go
player

• in 2017 AlphaGo beat the number one ranked player in
the world in a three-game match

) AlphaGo algorithm finds its moves based on
knowledge previously acquired by ML, specifically by
an artificial neural network both from human and
computer play

• a neural network is trained to identify the best moves
and the winning percentages of these moves

AlphaGo

7



AlphaGo

• Go is an abstract strategy board game for two players

• in 2015 the original AlphaGo became the first
computer program to beat a human professional Go
player

• in 2017 AlphaGo beat the number one ranked player in
the world in a three-game match

) AlphaGo algorithm finds its moves based on
knowledge previously acquired by ML, specifically by
an artificial neural network both from human and
computer play

• a neural network is trained to identify the best moves
and the winning percentages of these moves

AlphaGo

7



AlphaGo

• Go is an abstract strategy board game for two players

• in 2015 the original AlphaGo became the first
computer program to beat a human professional Go
player

• in 2017 AlphaGo beat the number one ranked player in
the world in a three-game match

) AlphaGo algorithm finds its moves based on
knowledge previously acquired by ML, specifically by
an artificial neural network both from human and
computer play

• a neural network is trained to identify the best moves
and the winning percentages of these moves

AlphaGo

7



Machine Learning Lecture
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Lecture plan

 Simple models:
• linear regression
• classification algorithms

 Unsupervised data processing:
• principal components analysis (PCA)
• clustering

 neural networks and deep learning:
• feed forward neural network
• convolutional neural network
• autoencoder

 Machine Learning for time series
• forecasting
• classification
• anomaly detection
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Software

scikit
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Software

• Jupyter
jupyter.org

• Metacentrum
www.metacentrum.cz

• JupyterHub
jupyter.cloud.metacentrum.cz
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Machine learning is an optimization problem
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Optimization problem

• Find global minimum of a multimensional function f(x), where x = (x1, x2, . . . , xn)
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Linear and Polynomial Regression
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Linear regression

Linear regression

ŷ = w0 + w1x1 + w2x2 + . . . wnxn = fw(x) = wᵀx (model)

• input: xᵀ = (x0, x1, x2, . . . , xn), where x0 = 1

• weigths: wᵀ = (w0, w1, w2, . . . , wn), where w0 is bias

Mean square error

Lw(X,y) = 1
m

m∑
i=1

(
wᵀx(i) − y(i))2 (loss function)

• trainig dataset: X = (x(1),x(2), . . . ,x(m)) is an input matrix, and
y = (y(1), y(2), . . . , y(m)) is a vector of target values

� Our task: find w components in order to minimize Lw on the given training dataset (X,y)
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Machine learning terminology

ŷ = fw(x) = wᵀx model
fw hypotesis function

(X,y) training dataset
x(k) k-th sample / instance’s feature vector
x

(k)
i i-th feature
y(k) k-th target

x(k) ∈ F = I1 × I2 × · · · × In F is the feature space
n number of features / dimension of the feature space
ŷ predicted value
wj j-th model parameter
w0 bias term

Lw(X,y) loss function
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Linear Regression

Normal equation

w∗ = (XᵀX)−1 Xᵀ y

• w∗ minimizes the mean square error

Pseudoinverse

w∗ = X+y

• pseudoinverse or Moore-Penrose
inverse X+

• Singular value decomposition (SVD):
X = U Σ V ᵀ

• pseudoinverse X+ = V Σ+ Uᵀ

Batch gradient descent

∂Lw

∂wj
= 2
m

m∑
i=1

(
wᵀx(i) − y(i)) x(i)

j

∇wLw =



∂Lw

∂w0

∂Lw

∂w1
...

∂Lw

∂wn


= 2
m

Xᵀ (Xw − y)

w ← w − η∇wLw (update)
• Learning rate: 0 < η � 1
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Gradient Descent

• function fw(x)

• parameters w = (w0, w1, . . . , wn)

• GD update

w ← w − η∇wfw (GD)

• learning rate 0 < η � 1

* problem with local minima

17



Important Notes on Gradient Descent

 Linear Regression model is a convex function
• there are no local minima, just one global minimum
• it is a continuous function with a slope that never changes abruptly
é Gradient Descent is guaranteed to approach arbitrarily close the global minimum.

 properly set the learning rate η: not too small, not too large

) When using regularization, always scale your data

¥ Standardize features by removing the mean and scaling to unit variance.
• For any sample x of the training set calculate

z = (x− u)/s (Standard Scaler)

where u is the mean of the training samples and s is the standard deviation of the training
samples
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Stochastic Gradient Descent

* in Batch GD it takes a lot of computational time to calculate Lw(X,y), especially, when the
number of examples in X is large

Stochastic Gradient Descent (SGD)

• we do not use the whole batch for calculating Lw

• we pick just one random instance from X

� SGD is faster than Batch GD
� can avoid local minima (finds global minimum)
1 less regular (never settles down in the minimum)
1 some instances may be picked several times, while others may not be picked at all

ÿ irregularity of SGD can be solved by learning schedule: gradually decrease η
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Mini-Batch Gradient Descent

Mini-Batch Gradient Descent

• calculate gradient on a small random set of instances of X

� more regular than SGD
� Mini-batch GD can be run in parallel
� Mini-batch GD has an advantage on GPUs where matrix operations are optimized
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Gradient Descent Methods

Figure source: analyticsvidhya.com
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Linear Regression using Gradient Descent

• gradient descent
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Polynomial Regression: add polynomial features

• suppose a 1-dimensional dataset X = {−3,−2,−1, 0, 1, 2, 3} and y with measured values
• with Linear Regression one can fit the data as

y = a x+ b (1D Linear Regression)

• if you assume that you need a higher degree polynomial curve to fit the data you can add
polynomial feature

• in case of 2-nd degree polynomial one can extend the data to two dimensions
X2 = {(−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9)}

• then we can fit the data using Linear Regression as

y = a x1 + b x2 + c (2D Linear Regression)

which is
y = b x2 + a x+ c (Polynomial Regression)
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Polynomial Regression
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Higher degree polynomials
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Learning Curves

underfitting
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The Bias/Variance Trade–o�

 Model’s generalization error can be expressed as a sum of three errors:

• Bias: error due to a wrong assumption.
A high-bias model is likely to underfit the training data.

↪→ adding more training examples does not help. You need to use more complex model.

• Variance: error due to the model’s excessive sensitivity.
Model with high variance is likely to overfit the trainig data.

↪→ use more training data or reduce number of the fitting parameters.
↪→ use regularized models.

• Irreducible error: error due to noise in the data.
↪→ It can be avoided by cleaning up the data (fix the data sources, such as broken detectors, or

remove outliers).
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Take Home Messages

 training a ML model means to solve an optimization problem
• we minimize the loss function by setting the model’s

parameters

 Stochastic Gradient Descent is an e�cient way of training
• for Linear Regression it guarantees finding the global minimum

 we have to make a trade–o� between bias and variance errors
in order to decrease the generalization error

• we need to analyze the the training process: learning curves

28


