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Unsupervised phase classification
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https://www.quantamagazine.org/mega-magnet-reveals-superconductor-secret-20160222/

+ Principal Component Analysis (PCA)

« Dimensional reduction and

visualization « Unsupervised phase classification
« Unsupervised phase classification - Complicated phase diagrams
* Kernel PCA - Interpretability
* Clustering
+ K-Means

+ Density-based (DB) clustering



Dimensional reduction, data visualization
and phase transitions
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Why to reduce dimensionality

+ By dimension we mean measured property N
« There is a structure in (unlabeled) scientific | Jogsignal .
o
data ~

+ There are (probably) correlations between
the measured properties

« Astronomical number of degrees of
freedom can be often replaced by order
parameters or effective variables .

* Intrinsic dimensionality - a minimum

number of dimensions required to capture
the signal Physics Reports 810,1 (2019)
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Singular Value Decomposition (SVD)
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Principal component analysis (PCA)

« PCA is the most important application of
the SVD in ML '
(SVD is related to eigenvalue problem of the e
covariance matrix matrix ﬁxcxi = V%VT)

+ The main goal of PCA is to identify the most

. . N\
meaningful basis!
+ What does the "most meaningful" even camera A camera B camera C
mean? o x he
+ We assume that large variances means : SF
signal, i.e., that there is a large Signal to -
Noise ratio in our data! J. Shlens: A Tutorial on Principal

+ Let me explain [Check notebook pca_blobs] Component Analysis
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Principal component analysis (PCA)

Summary:
+ We need to:

+ store data in n x m matrix, where m is the number of
measured properties and n is the number of samples.

« PCA will:

« center each dimension to zero

« find direction with the largest variance

« rotate the data so this direction becomes the first PC,

« find next direction perpendicular to PC, with the largest
variance

+ rotate the data so this direction becomes the second PC,

* profit



Why does PCA work and when it does not?

PCA assumptions:

Linearity
The new basis is build as a linear combination of the components of the

original one.

Large Signal to Noise ratio
Principal components with larger associated variances represent the droids we

are looking.

The principal components are ortogonal
This allows us to use SVD and we can be sure that we will get the optimal result
(If the three assumptions are true!)

Check notebook pca_blobs on Kernel PCA.



PCA and phase transitions

« The PCAis in physics usually used

as a first step towards supervised Test case the Ising model:
learning. H= _]ZSi5j+hZSj (1)
« But (for me) there is a much more U J
exciting application of PCA. Its a paradigmatic model for phase
transitions and defines its universality

+ Automatic identification of
phase-boundaries without a
supervision.

class.

10



PCA and phase transitions in Ising model

Let's say that we don’t know what we should measure. Therefore we will store
snapshots of spin configurations. They contain all the information necessary for
investigation of order and phase transitions. PCA can be used to extract it.
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PCA and phase transitions in Ising model
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Hu et al., Phys. Rev. E 95, 062122 (2017)
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distribution to the neighborhood of each data
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Other dimension reduction techniques

t-SNE The basic idea is to associate a probability
distribution to the neighborhood of each data
point and keep similar instances together.
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Basic concepts

The aim of clustering is to group unlabeled data
into clusters according to some similarity or
distance measure

Probably the simplest way to seek a hidden
structure

Lots of methods

We will talk about more standard ones: K-means
and DB-clustering

+ and one less standard method which requires NN

13



+ Let's have N unlabeled measurements x;,
where x; € RP

K-means clustering




K-means clustering

o

A
SRR

+ Let's have N unlabeled measurements x;,
where x; € RP

 Lets assume K cluster centers, i.e., cluster
means p, € RP




K-means clustering

+ Let's have N unlabeled measurements x;,
where x; € RP

 Lets assume K cluster centers, i.e., cluster
means p, € RP

+ We don't know yet where they are




K-means clustering

o

RS J 1
-22i~:57\v'"" N

Let's have N unlabeled measurements x;,
where x; € RP

 Lets assume K cluster centers, i.e., cluster
means p, € RP

We don’t know yet where they are

The actual task is to:




K-means clustering

o

RS J 1
-22i~:57\v'"" N

+ Let's have N unlabeled measurements x;,
where x; € RP

 Lets assume K cluster centers, i.e., cluster
means p, € RP

« We don't know yet where they are

» The actual task is to:

Find the cluster means (positions) and the
data point assignments to them in order to
minimize the following cost function:

K N ;
CU{x,u}) =" rip (X — pi)*, where rjp € {0,1} 6%

k=1 i=1
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K-Means : optimization procedure

K-means clustering

o

RS J 1
-22i~:57\v'"" N

+ Take assignments r, minimize C with respect
to g

1
= r x
1203 Ny, §,' iR

+ Take means p, minimize C with respect to r,

« This is achieved by assigning each data point .
to its nearest cluster mean

+ Repeat! K-means algorithm is guaranteed to
converge.

+ Be aware that K-means can lead to spurious e
results




K-Means: Pros. and Cons.

Advantages _
K-means clustering

« |t is fast and scalable

+ It converges (it will finish)

+ Can be improved

Disadvantages

» |t must be run several times

« The number of clusters must be specify
- Does not behave well when the clusters have
significantly
+ different size,
+ different densities,
« nonspherical shapes
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Density-based (DB) clustering DBSCAN

Estimated number of clusters: 2
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. .
Other clustering techniques
i Affinity Spectral Gaussian
Propagation MeanShif Clustering /al Clustering DBSCAN OPTICS BIRCH Mixture

Comparing different clustering algorithms in sklearn 18


https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
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More complicated systems, e.g., Phase diagram of correlated electrons
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More complicated systems, e.g., Phase diagram of correlated electrons
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More complicated systems, e.g., Phase diagram of correlated electrons
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Different ordering (phases) have different physical properties
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Automatic classification - basic principles

We want to construct the phase diagram without supervision!

- We don't know:
« where the phases are [
- what type they are calculate """"I

« how many there are samples i model
« We know:

+ GS configuration at any p = (U, p)

We can train neural network to infer p = (U, ) by minimizing ép = ||p — p||

* Input is image-like
« We needed DNN (namely CNN), but other predictive models can be used
« The MSE loss function is defined as

Ense = Np1NX Epjzx:Hp—p(x)Hz
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Automatic classification - basic principles
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Automatic classification - basic principles
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Automatic classification - basic principles
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Final phase diagram
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