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Supervised Learning

Supervised

• Typical tasks: classi�cation, target
predictions, regression

• Training set contains labels, i.e., the
desired result

• Some supervised learning techniques:
Support Vector Machines, Decision
Trees and Random Forest, Supervised
Neural Networks

• All of the above are used for Stellar
Classi�cation

https://en.wikipedia.org/wiki/Hertzsprung-Russell-diagram
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The main ideas behind unsupervised learning

• Even without labels data have structure

• They represent an underlying
distribution

• We often need a lot of data to notice
the pattern

• We can construct a model of the data
much less complex than the original set

• A perfect example in physics is
thermodynamics

• It helps a lot to �nd the right "angle" or
"natural" basis of the data

https://en.wikipedia.org/wiki/Hertzsprung-Russell-diagram
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Unsupervised phase classi�cation
Bilayer Manganites [Dagotto, Science (2005)] Cuprates [Shmahalo, Quanta Magazine, (2016)]

Single layered Ruthenates [Dagotto, Science (2005)]
LASCO [Wen at al.,Nature Comm. (2019)]
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https://www.quantamagazine.org/mega-magnet-reveals-superconductor-secret-20160222/


Outline

• Principal Component Analysis (PCA)

• Dimensional reduction and
visualization

• Unsupervised phase classi�cation
• Kernel PCA

• Clustering
• K-Means
• Density-based (DB) clustering

• Unsupervised phase classi�cation
• Complicated phase diagrams
• Interpretability

4



Dimensional reduction, data visualization
and phase transitions
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Why to reduce dimensionality

• By dimension we mean measured property

• There is a structure in (unlabeled) scienti�c
data

• There are (probably) correlations between
the measured properties

• Astronomical number of degrees of
freedom can be often replaced by order
parameters or e�ective variables

• Intrinsic dimensionality - a minimum
number of dimensions required to capture
the signal

Physics Reports 810,1 (2019)
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Singular Value Decomposition (SVD)

X = UΣVT =
[
Ǔ Ǔ⊥

] [Σ̌
0

]
VT = ǓΣ̌VT

U,S,V=np.linalg.svd(X,full_matrices=True)
U,S,V=np.linalg.svd(X,full_matrices=False)

Eckart-Young Theorem
The optimal rank-r approximation to X, in a
least-squares sense, is given by the rank-r SVD
truncation X̃.

X̃r =
r∑
i=1
σiuivTi = σ1u1vT1 + σ2u2vT2 + . . . Original image resolution is 2000 × 1500

Brunton and Kutz, Data Driven Science & Engineering
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VT = ǓΣ̌VT

U,S,V=np.linalg.svd(X,full_matrices=True)
U,S,V=np.linalg.svd(X,full_matrices=False)

Eckart-Young Theorem
The optimal rank-r approximation to X, in a
least-squares sense, is given by the rank-r SVD
truncation X̃.

X̃r =
r∑
i=1
σiuivTi = σ1u1vT1 + σ2u2vT2 + . . . Original image resolution is 2000 × 1500

Brunton and Kutz, Data Driven Science & Engineering

6



Singular Value Decomposition (SVD)

X = UΣVT =
[
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Principal component analysis (PCA)

• PCA is the most important application of
the SVD in ML
(SVD is related to eigenvalue problem of the
covariance matrix matrix 1

n−1XcX
†
c = V Σ2

l−1V
†)

• The main goal of PCA is to identify the most
meaningful basis!

• What does the "most meaningful" even
mean?

• We assume that large variances means
signal, i.e., that there is a large Signal to
Noise ratio in our data!

• Let me explain [Check notebook pca_blobs]

Physics Reports 810,1 (2019)
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the SVD in ML
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†
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l−1V
†)

• The main goal of PCA is to identify the most
meaningful basis!

• What does the "most meaningful" even
mean?

• We assume that large variances means
signal, i.e., that there is a large Signal to
Noise ratio in our data!

• Let me explain [Check notebook pca_blobs]

J. Shlens: A Tutorial on Principal
Component Analysis
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Principal component analysis (PCA)

Summary:
• We need to:

• store data in n×m matrix, where m is the number of
measured properties and n is the number of samples.

• PCA will:

• center each dimension to zero
• �nd direction with the largest variance
• rotate the data so this direction becomes the �rst PC0

• �nd next direction perpendicular to PC0 with the largest
variance

• rotate the data so this direction becomes the second PC1

• . . .
• pro�t
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Why does PCA work and when it does not?

PCA assumptions:

Linearity
The new basis is build as a linear combination of the components of the
original one.

Large Signal to Noise ratio
Principal components with larger associated variances represent the droids we
are looking.

The principal components are ortogonal
This allows us to use SVD and we can be sure that we will get the optimal result
(If the three assumptions are true!)

Check notebook pca_blobs on Kernel PCA. 9



PCA and phase transitions

• The PCA is in physics usually used
as a �rst step towards supervised
learning.

• But (for me) there is a much more
exciting application of PCA.

• Automatic identi�cation of
phase-boundaries without a
supervision.

Test case the Ising model:
H = −J

∑
{ij}

SiSj + h
∑
j
Sj (1)

Its a paradigmatic model for phase
transitions and de�nes its universality
class.

10



PCA and phase transitions in Ising model

Let’s say that we don’t know what we should measure. Therefore we will store
snapshots of spin con�gurations. They contain all the information necessary for
investigation of order and phase transitions. PCA can be used to extract it.

Wang, Phys. Rev. B 94, 195105 (2016)
11



PCA and phase transitions in Ising model

Hu et al., Phys. Rev. E 95, 062122 (2017)
11



Other dimension reduction techniques

• t-SNE The basic idea is to associate a probability
distribution to the neighborhood of each data
point and keep similar instances together.

• Isomap - Preserves the number of nodes between
two data points.

• Random Projection - Yep, it uses a random linear
projection and it works. World is a strange place.

• . . .

Physics Reports 810,1 (2019)
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Clustering

12



Basic concepts

• The aim of clustering is to group unlabeled data
into clusters according to some similarity or
distance measure

• Probably the simplest way to seek a hidden
structure

• Lots of methods
• We will talk about more standard ones: K-means
and DB-clustering

• and one less standard method which requires NN
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K-Means

• Let’s have N unlabeled measurements xi,
where xi ∈ Rp

• Lets assume K cluster centers, i.e., cluster
means µk ∈ Rp

• We don’t know yet where they are
• The actual task is to:
Find the cluster means (positions) and the
data point assignments to them in order to
minimize the following cost function:

C({x,µ}) =
K∑
k=1

N∑
i=1
rik (xi − µk)2 , where rik ∈ {0, 1}

14
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K-Means : optimization procedure

• Take assignments r, minimize C with respect
to µk

µk = 1
Nk

∑
i
rikxi

• Take means µ, minimize C with respect to rik
• This is achieved by assigning each data point
to its nearest cluster mean

• Repeat! K-means algorithm is guaranteed to
converge.

• Be aware that K-means can lead to spurious
results

15
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K-Means: Pros. and Cons.

Advantages

• It is fast and scalable
• It converges (it will �nish)
• Can be improved

Disadvantages

• It must be run several times
• The number of clusters must be specify
• Does not behave well when the clusters have
signi�cantly
• di�erent size,
• di�erent densities,
• nonspherical shapes

16



Density-based (DB) clustering DBSCAN

17
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Density-based (DB) clustering DBSCAN
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Other clustering techniques

Comparing di�erent clustering algorithms in sklearn 18

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html


Unsupervised phase classi�cation

18



More complicated systems, e.g., Phase diagram of correlated electrons

HFK = −t
∑
〈i,j〉

d̂†i d̂j + U
∑
i
f̂ †i f̂i d̂

†
i d̂i

Schematic FKM phase diagram [Lemanski et al., PRL (2002)]
Examples of stable GS con�gurations
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Phase diagram of generalized FKM [Čenčariková et al., (2011)] 19



More complicated systems, e.g., Phase diagram of correlated electrons

HFK = −t
∑
〈i,j〉

d̂†i d̂j + U
∑
i
f̂ †i f̂i d̂

†
i d̂i

Schematic FKM phase diagram [Lemanski et al., PRL (2002)]

• The classi�cation of GS phases
in the FKM was for years a
manual, lengthy and
cumbersome task

• Yet, it seems to be suited for
the modern Machine learning
(ML) techniques

• But we need something better
then standard techniques

19



Di�erent ordering (phases) have di�erent physical properties

Insulator Metal

U=1.0, Nd=128, L=16

d

U=6.6, Nd=64, L=16

U=1.0, Nf=128, L=16

f

U=6.6, Nf=64, L=16
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Automatic classi�cation - basic principles

We want to construct the phase diagram without supervision!

• We don’t know:

• where the phases are
• what type they are
• how many there are

• We know:

• GS con�guration at any p ≡ (U, ρ)

We can train neural network to infer p ≡ (U, ρ) by minimizing δp = ||p− p||

• Input is image-like
• We needed DNN (namely CNN), but other predictive models can be used
• The MSE loss function is de�ned as

LMSE = 1
NpNx

∑
p

∑
x

∣∣∣∣∣∣p− p(x)
∣∣∣∣∣∣2
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Automatic classi�cation - basic principles
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Final phase diagram
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