
Machine Learning with Time Series
Forecasting, Recurrent neural networks

Martin Žonda and Pavel Baláž
November 2022

The world is changing in time

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

v

τ/Qp

30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

φ
/2

π

τ/Qp

Qp=5, Θ=0.2
Is=0.6
Running

• Time series are
ubiquitous in science
and industry

• Time dependent data
aren’t statistically
independent

• Forecasting is
important, but it is
not the only
interesting task for ML

1

The world is changing in time

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

v

τ/Qp

30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

φ
/2

π

τ/Qp

Qp=5, Θ=0.2
Is=0.6
Running

1

The world is changing in time

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

v

τ/Qp

 0

 2

 4

 6

 8

 10

 12

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

φ
/2

π

τ/Qp

Qp=5, Θ=0.2
Is=0.1
Locked

1

The world is changing in time

 -1.0

 -0.5

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 0 2000 4000 6000 8000 10000

v

τ/Qp

 0.0

 500.0

1000.0

1500.0

2000.0

2500.0

 0 2000 4000 6000 8000 10000

φ
/2

π

τ/Qp

Qp=9, Θ=0.08
Is=0.3
Bistability

1

Outline

• About Data
• Common predictor based
techniques

• Recurrent Neurons and Layers
• Memory cells
• Input and output

• Simple RNN
• Deep RNN

2

Time dependent data

2

Data types

• Single series, single
variable

• Single series,
multivariate

• Panel data

• Panel data may
have misaligned
time points

3

Data types

• Single series, single
variable

• Single series,
multivariate

• Panel data

• Panel data may
have misaligned
time points

3

Data types

• Single series, single
variable

• Single series,
multivariate

• Panel data

• Panel data may
have misaligned
time points

3

Data types

• Single series, single
variable

• Single series,
multivariate

• Panel data
• Panel data may

have misaligned
time points

3

Time series characteristics

• Trend analysis

• Outliers
• Stationarity
• Periodicity

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

 2000 4000

(a)

∆M
x

t0 ≡ 0t’

V = 0 V = 1

J
sd

 = 2, Γ = 1

M
r
 /

N
S

time t

M
x
r / NS

M
y
r / NS

1 - M
z
r / NS

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

 1000 3000 5000 7000 9000

(b)

∆M
x

t0 ≡ 0t’

V = 0 V = 1

J
sd

 = 6, Γ = 1

M
r
 /

N
S

time t

4

Time series characteristics

• Trend analysis

• Outliers
• Stationarity
• Periodicity

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

v

τ/Qp

30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

φ
/2

π

τ/Qp

Qp=5, Θ=0.2
Is=0.6
Running

4

Time series characteristics

• Trend analysis
• Outliers

• Stationarity
• Periodicity

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

v

τ/Qp

 0

 2

 4

 6

 8

 10

 12

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

φ
/2

π

τ/Qp

Qp=5, Θ=0.2
Is=0.1
Locked

4

Time series characteristics

• Trend analysis
• Outliers
• Stationarity

• Periodicity

arXiv:2102.05613
4

Time series characteristics

• Trend analysis
• Outliers
• Stationarity
• Periodicity

-0.8

-0.4

0.0

0.4

0.8

 0 2000 4000 6000

(c)

M
l
/N

S

time t

Jsd = 5

-0.8

-0.4

0.0

0.4

0.8
(a)

M
l
/N

S

M
x
l

M
y
l

fit M
x
l

fit M
y
l Jsd = 1

-0.8

-0.4

0.0

0.4

0.8
(b)

M
l
/N

S

Jsd = 3.3

4

Forecasting

4

Using standard ML techniques

Strategy for forecasting with common ML techniques:
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 . . . dN ? ? ?

We can make our own training data:
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 . . . dN ? ? ?
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 . . . dN ? ? ?
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 . . . dN ? ? ?

...
d1 d2 d3 d4 d5 d6 d7 . . . dN−3 dN−2 dN−1 dN ? ? ?

Training data:
d1 d2 d3 d4 d5

d2 d3 d4 d5 d6

d3 d4 d5 d6 d7
... 5

RNN and CNN

source: towardsdatascience.com

source: wikipedia.com

• CNN and RNN are both part of
Deep Learning

• CNN and RNN follow di�erent
architectures

• RNN are specifically build for
forecasting

• Yet, there are CNN capable to
deal with large time series

• e.g: WaveNet
• Nevertheless, today we will

focus on RNN

6

RNN and CNN

source: towardsdatascience.com

source: wikipedia.com

• CNN and RNN are both part of
Deep Learning

• CNN and RNN follow di�erent
architectures

• RNN are specifically build for
forecasting

• Yet, there are CNN capable to
deal with large time series

• e.g: WaveNet
• Nevertheless, today we will

focus on RNN

6

RNN and CNN

source: towardsdatascience.com

source: wikipedia.com

• CNN and RNN are both part of
Deep Learning

• CNN and RNN follow di�erent
architectures

• RNN are specifically build for
forecasting

• Yet, there are CNN capable to
deal with large time series

• e.g: WaveNet
• Nevertheless, today we will

focus on RNN

6

RNN and CNN

source: towardsdatascience.com

source: wikipedia.com

• CNN and RNN are both part of
Deep Learning

• CNN and RNN follow di�erent
architectures

• RNN are specifically build for
forecasting

• Yet, there are CNN capable to
deal with large time series

• e.g: WaveNet
• Nevertheless, today we will

focus on RNN

6

RNN and CNN

source: towardsdatascience.com

source: wikipedia.com

• CNN and RNN are both part of
Deep Learning

• CNN and RNN follow di�erent
architectures

• RNN are specifically build for
forecasting

• Yet, there are CNN capable to
deal with large time series

• e.g: WaveNet

• Nevertheless, today we will
focus on RNN

6

RNN and CNN

source: towardsdatascience.com

source: wikipedia.com

• CNN and RNN are both part of
Deep Learning

• CNN and RNN follow di�erent
architectures

• RNN are specifically build for
forecasting

• Yet, there are CNN capable to
deal with large time series

• e.g: WaveNet
• Nevertheless, today we will

focus on RNN

6

Recurrent Neurons and Layers

6

Recurrent Neuron

• RNN looks like a standard
feedforward NN

• Except it has connections from
output to input

• Neuron in time t + 1 receives input
xt+1 and output of yt

• This is still the same (one) neuron
plotted in di�erent times

• We can build a layer

7

Recurrent Neuron

• RNN looks like a standard
feedforward NN

• Except it has connections from
output to input

• Neuron in time t + 1 receives input
xt+1 and output of yt

• This is still the same (one) neuron
plotted in di�erent times

• We can build a layer

7

Recurrent Neuron

• RNN looks like a standard
feedforward NN

• Except it has connections from
output to input

• Neuron in time t + 1 receives input
xt+1 and output of yt

• This is still the same (one) neuron
plotted in di�erent times

• We can build a layer

7

Recurrent Neuron

• RNN looks like a standard
feedforward NN

• Except it has connections from
output to input

• Neuron in time t + 1 receives input
xt+1 and output of yt

• This is still the same (one) neuron
plotted in di�erent times

• We can build a layer

7

Recurrent Neuron

• RNN looks like a standard
feedforward NN

• Except it has connections from
output to input

• Neuron in time t + 1 receives input
xt+1 and output of yt

• This is still the same (one) neuron
plotted in di�erent times

• We can build a layer

7

Recurrent Layer

• Each recurrent neuron has two
sets of weights wx and wy

• Output of RNN at time t:
yt = Φ(WxxTt +WyyTt−1 + b) (1)

• Here Φ() is the activation
function

• yt is a function of xt and yt−1 →
recurrent behavior

• At t = 0 we set y−1 = 0

8

Recurrent Layer

• Each recurrent neuron has two
sets of weights wx and wy

• Output of RNN at time t:
yt = Φ(WxxTt +WyyTt−1 + b) (1)

• Here Φ() is the activation
function

• yt is a function of xt and yt−1 →
recurrent behavior

• At t = 0 we set y−1 = 0

8

Recurrent Layer

• Each recurrent neuron has two
sets of weights wx and wy

• Output of RNN at time t:
yt = Φ(WxxTt +WyyTt−1 + b) (1)

• Here Φ() is the activation
function

• yt is a function of xt and yt−1 →
recurrent behavior

• At t = 0 we set y−1 = 0

8

Recurrent Layer

• Each recurrent neuron has two
sets of weights wx and wy

• Output of RNN at time t:
yt = Φ(WxxTt +WyyTt−1 + b) (1)

• Here Φ() is the activation
function

• yt is a function of xt and yt−1 →
recurrent behavior

• At t = 0 we set y−1 = 0

8

Recurrent Layer

• Each recurrent neuron has two
sets of weights wx and wy

• Output of RNN at time t:
yt = Φ(WxxTt +WyyTt−1 + b) (1)

• Here Φ() is the activation
function

• yt is a function of xt and yt−1 →
recurrent behavior

• At t = 0 we set y−1 = 0

8

Memory cells

• It is a trivial example of a
memory cell

• Output depends on the inputs
from previous time steps

• Neuron computes a weighted
sum of the inputs

• The memory is a bit short (≈ 10
time steps)

• A more complex cells are
needed for longer memories

• Memory function can be also
generalized ht = f (ht−1, xt)

9

Memory cells

• It is a trivial example of a
memory cell

• Output depends on the inputs
from previous time steps

• Neuron computes a weighted
sum of the inputs

• The memory is a bit short (≈ 10
time steps)

• A more complex cells are
needed for longer memories

• Memory function can be also
generalized ht = f (ht−1, xt)

9

Memory cells

• It is a trivial example of a
memory cell

• Output depends on the inputs
from previous time steps

• Neuron computes a weighted
sum of the inputs

• The memory is a bit short (≈ 10
time steps)

• A more complex cells are
needed for longer memories

• Memory function can be also
generalized ht = f (ht−1, xt)

9

Memory cells

• It is a trivial example of a
memory cell

• Output depends on the inputs
from previous time steps

• Neuron computes a weighted
sum of the inputs

• The memory is a bit short (≈ 10
time steps)

• A more complex cells are
needed for longer memories

• Memory function can be also
generalized ht = f (ht−1, xt)

9

Memory cells

• It is a trivial example of a
memory cell

• Output depends on the inputs
from previous time steps

• Neuron computes a weighted
sum of the inputs

• The memory is a bit short (≈ 10
time steps)

• A more complex cells are
needed for longer memories

• Memory function can be also
generalized ht = f (ht−1, xt)

9

Memory cells

• It is a trivial example of a
memory cell

• Output depends on the inputs
from previous time steps

• Neuron computes a weighted
sum of the inputs

• The memory is a bit short (≈ 10
time steps)

• A more complex cells are
needed for longer memories

• Memory function can be also
generalized ht = f (ht−1, xt)

9

What is this good for?

• RNN are build for forecasting

• But they can do more (e.g.,
classification)

• Sequence generation (similar
architecture as CNN)

• And then there are
combinations, e.g.,
Encoder/Decoder

• Transformation of the data to
di�erent basis?

10

What is this good for?

• RNN are build for forecasting
• But they can do more (e.g.,

classification)

• Sequence generation (similar
architecture as CNN)

• And then there are
combinations, e.g.,
Encoder/Decoder

• Transformation of the data to
di�erent basis?

10

What is this good for?

• RNN are build for forecasting
• But they can do more (e.g.,

classification)
• Sequence generation (similar

architecture as CNN)

• And then there are
combinations, e.g.,
Encoder/Decoder

• Transformation of the data to
di�erent basis?

10

What is this good for?

• RNN are build for forecasting
• But they can do more (e.g.,

classification)
• Sequence generation (similar

architecture as CNN)
• And then there are

combinations, e.g.,
Encoder/Decoder

• Transformation of the data to
di�erent basis?

10

What is this good for?

• RNN are build for forecasting
• But they can do more (e.g.,

classification)
• Sequence generation (similar

architecture as CNN)
• And then there are

combinations, e.g.,
Encoder/Decoder

• Transformation of the data to
di�erent basis?

10

Training

We can use a regular back-propagation, however, it is rolled through time

11

More than one time-step

• We can simply add the prediction of the last point to the series and predict
again

• It is not a good strategy
• Errors accumulate (Dense model is often superior to RNN)
• It is better to train RNN to predict all next values at once

model = keras.models.Sequential([
keras.layers.SimpleRNN(20,return_sequences=True,input_shape=[None,1]),
keras.layers.SimpleRNN(20),
keras.layers.Dense(10)])

12

More than one time-step

• We can simply add the prediction of the last point to the series and predict
again

• It is not a good strategy
• Errors accumulate (Dense model is often superior to RNN)
• It is better to train RNN to predict all next values at once

model = keras.models.Sequential([
keras.layers.SimpleRNN(20,return_sequences=True,input_shape=[None,1]),
keras.layers.SimpleRNN(20),
keras.layers.Dense(10)])

12

More than one time-step

Deep RNN predicting 10 time steps at once:

MSE for the last point was 0.07.

13

We can still do better

Instead of predicting N time steps at the last time, we can predict and evaluate
(calculate the loss function) N time steps at each time step!

14

We can still do better

Deep RNN sequence to sequence model:

MSE for the last point was 0.015

15

Common problems and their solutions

15

Long Sequences

• RNN for long sequence is
basically a very deep network

• It su�ers from the problem of
unstable gradient

• RNN has typically short
memory

• It gradually forgets old inputs

16

Long Sequences

• RNN for long sequence is
basically a very deep network

• It su�ers from the problem of
unstable gradient

• RNN has typically short
memory

• It gradually forgets old inputs

16

Long Sequences

• RNN for long sequence is
basically a very deep network

• It su�ers from the problem of
unstable gradient

• RNN has typically short
memory

• It gradually forgets old inputs

16

Long Sequences

• RNN for long sequence is
basically a very deep network

• It su�ers from the problem of
unstable gradient

• RNN has typically short
memory

• It gradually forgets old inputs

16

Short-Term Memory Problem

• Various types of memory cells have been introduced to solve this problem

• W.g., the Long Short-Term Memory (LSTM) cell
• The key idea is that it allows to learn what is important in a long-term run

and store it
• The details are complicated (see A. Géron’s Hands on ML), we will instead

check simpler GRU cell
• but there is a layer for that:

model = keras.models.Sequential([keras.layers.LSTM(20,
return_sequences=True, input_shape=[None, 1]),
keras.layers.LSTM(20, return_sequences=True),
keras.layers.TimeDistributed(keras.layers.Dense(10))])

17

Short-Term Memory Problem

• Various types of memory cells have been introduced to solve this problem
• W.g., the Long Short-Term Memory (LSTM) cell

• The key idea is that it allows to learn what is important in a long-term run
and store it

• The details are complicated (see A. Géron’s Hands on ML), we will instead
check simpler GRU cell

• but there is a layer for that:

model = keras.models.Sequential([keras.layers.LSTM(20,
return_sequences=True, input_shape=[None, 1]),
keras.layers.LSTM(20, return_sequences=True),
keras.layers.TimeDistributed(keras.layers.Dense(10))])

17

Short-Term Memory Problem

• Various types of memory cells have been introduced to solve this problem
• W.g., the Long Short-Term Memory (LSTM) cell
• The key idea is that it allows to learn what is important in a long-term run

and store it

• The details are complicated (see A. Géron’s Hands on ML), we will instead
check simpler GRU cell

• but there is a layer for that:

model = keras.models.Sequential([keras.layers.LSTM(20,
return_sequences=True, input_shape=[None, 1]),
keras.layers.LSTM(20, return_sequences=True),
keras.layers.TimeDistributed(keras.layers.Dense(10))])

17

Short-Term Memory Problem

• Various types of memory cells have been introduced to solve this problem
• W.g., the Long Short-Term Memory (LSTM) cell
• The key idea is that it allows to learn what is important in a long-term run

and store it
• The details are complicated (see A. Géron’s Hands on ML), we will instead

check simpler GRU cell

• but there is a layer for that:

model = keras.models.Sequential([keras.layers.LSTM(20,
return_sequences=True, input_shape=[None, 1]),
keras.layers.LSTM(20, return_sequences=True),
keras.layers.TimeDistributed(keras.layers.Dense(10))])

17

Short-Term Memory Problem

• Various types of memory cells have been introduced to solve this problem
• W.g., the Long Short-Term Memory (LSTM) cell
• The key idea is that it allows to learn what is important in a long-term run

and store it
• The details are complicated (see A. Géron’s Hands on ML), we will instead

check simpler GRU cell
• but there is a layer for that:

model = keras.models.Sequential([keras.layers.LSTM(20,
return_sequences=True, input_shape=[None, 1]),
keras.layers.LSTM(20, return_sequences=True),
keras.layers.TimeDistributed(keras.layers.Dense(10))])

17

Short-Term Memory Problem

• Various types of memory cells have been introduced to solve this problem
• W.g., the Long Short-Term Memory (LSTM) cell
• The key idea is that it allows to learn what is important in a long-term run

and store it
• The details are complicated (see A. Géron’s Hands on ML), we will instead

check simpler GRU cell
• but there is a layer for that:

model = keras.models.Sequential([keras.layers.LSTM(20,
return_sequences=True, input_shape=[None, 1]),
keras.layers.LSTM(20, return_sequences=True),
keras.layers.TimeDistributed(keras.layers.Dense(10))])

17

Short-Term Memory Problem

• Various types of memory cells have been introduced to solve this problem
• W.g., the Long Short-Term Memory (LSTM) cell
• The key idea is that it allows to learn what is important in a long-term run

and store it
• The details are complicated (see A. Géron’s Hands on ML), we will instead

check simpler GRU cell
• but there is a layer for that:

model = keras.models.Sequential([keras.layers.LSTM(20,
return_sequences=True, input_shape=[None, 1]),
keras.layers.LSTM(20, return_sequences=True),
keras.layers.TimeDistributed(keras.layers.Dense(10))])

17

RNN with LSTM cells

MSE for the last point was 0.01. We are getting better.
But the memory is still limited to 100 time steps.

We can do more if we combine memory cells with CNN.

18

RNN with LSTM cells

MSE for the last point was 0.01. We are getting better.

But the memory is still limited to 100 time steps.
We can do more if we combine memory cells with CNN.

18

RNN with LSTM cells

MSE for the last point was 0.01. We are getting better.
But the memory is still limited to 100 time steps.

We can do more if we combine memory cells with CNN.

18

RNN with LSTM cells

MSE for the last point was 0.01. We are getting better.
But the memory is still limited to 100 time steps.

We can do more if we combine memory cells with CNN.

18

Gated Recurrent Unit

GRU is a simplified version of
LSTM
zt = σ(Wxzxt +Whzht−1 + bz)
rt = σ(Wxrxt +Whrht−1 + br)
gt = tanh

(
Wxgxt−1 +Whg(rt.ht−1) + bg

)
ht = zt.ht−1 + (1− zt).gt

19

GRU plus 1D CNN

• GRU and LSTM allow to increase the memory to hundreds of time-steps

• But we might need to work with much longer sequences
• The remedy is to use CNN

model = keras.models.Sequential([
keras.layers.Conv1D(filters=20,kernel_size=4,strides=2,padding="valid",
input_shape=[None,1]), keras.layers.GRU(20, return_sequences=True),
keras.layers.GRU(20, return_sequences=True),
keras.layers.TimeDistributed(keras.layers.Dense(10))])

20

GRU plus 1D CNN

• GRU and LSTM allow to increase the memory to hundreds of time-steps
• But we might need to work with much longer sequences

• The remedy is to use CNN

model = keras.models.Sequential([
keras.layers.Conv1D(filters=20,kernel_size=4,strides=2,padding="valid",
input_shape=[None,1]), keras.layers.GRU(20, return_sequences=True),
keras.layers.GRU(20, return_sequences=True),
keras.layers.TimeDistributed(keras.layers.Dense(10))])

20

GRU plus 1D CNN

• GRU and LSTM allow to increase the memory to hundreds of time-steps
• But we might need to work with much longer sequences
• The remedy is to use CNN

model = keras.models.Sequential([
keras.layers.Conv1D(filters=20,kernel_size=4,strides=2,padding="valid",
input_shape=[None,1]), keras.layers.GRU(20, return_sequences=True),
keras.layers.GRU(20, return_sequences=True),
keras.layers.TimeDistributed(keras.layers.Dense(10))])

20

RNN plus 1D CNN

This is so far the best network. Its MSE is for last predicted point is 0.0085
Yet for soma tasks it can be still improved simply by dropping the RNN and using

just CNNs E.g., by using WaveNet.
WaveNet

21

RNN plus 1D CNN

This is so far the best network. Its MSE is for last predicted point is 0.0085

Yet for soma tasks it can be still improved simply by dropping the RNN and using
just CNNs E.g., by using WaveNet.

WaveNet

21

RNN plus 1D CNN

This is so far the best network. Its MSE is for last predicted point is 0.0085
Yet for soma tasks it can be still improved simply by dropping the RNN and using

just CNNs E.g., by using WaveNet.

WaveNet

21

RNN plus 1D CNN

This is so far the best network. Its MSE is for last predicted point is 0.0085
Yet for soma tasks it can be still improved simply by dropping the RNN and using

just CNNs E.g., by using WaveNet.
WaveNet

21

