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Spectroscopy

What it is?

• Spectroscopy is the study of the interaction between
matter and electromagnetic radiation

• The technique of splitting light (i.e., electromagnetic
radiation) into its constituent wavelengths i.e., a spectrum

Credit: COSMOS - The SAO Encyclopedia of Astronomy



Spectroscopy

Spectrograph

Credit: James B. Kaler, in "Stars and their Spectra," Cambridge University Press, 1989



Spectroscopy

Types of a spectra

• Continuous Spectrum - stellar photosphere is blackbody with Teff

• Emission line Spectrum - requires atoms or ions in an excited
state

• Absorption Line Spectrum - cooler material in front of hotter
material

Credit: COSMOS - The SAO Encyclopedia of Astronomy



Spectroscopy

Electromagnetic radiation

Credit: NASA’s Imagine



Spectroscopy

Electromagnetic radiation

Credit: NASA’s Imagine

For massive, hot stars the peak radiation is

in UV spectral region

λmax T=b

b=0.29 cm K; T= 30 000 K ⇒
λmax = 960 Å

Wien’s displacement law



Spectroscopy

Electromagnetic radiation

Credit: NASA’s Imagine
Credit: NASA’s Imagine

Earth Atmosphere



Spectroscopy

Electromagnetic radiation

Credit: NASA’s Imagine

International Ultraviolet Explorer
120 to 340 nm

Credit: NASA’s Imagine

IUE



Spectroscopy

Electromagnetic radiation

Credit: NASA’s Imagine

The Far Ultraviolet Spectroscopic Explorer
90 to 120 nm

Credit: NASA’s Imagine

FUSE



Spectroscopy

Electromagnetic radiation

Credit: NASA’s Imagine

The Hubble Space Telescope
115–2500 nm

Credit: NASA’s Imagine

HST



Spectroscopy

UV spectra

• Merged spectrum of Copernicus and IUE UV high-resolution observations of the

supergiant ζ Puppis (Pauldrach et al., 1994)



Spectroscopy

Optical spectra

• ζ Pup observed with FEROS (Bouret et al., 2012)



Spectroscopy

X-ray spectra

• ζ Pup observed with XMM-Newton (Kahn et al., 2001)



Spectroscopy

SED of O-type stars

Credit: Bouret et al., 2012



Spectroscopy

Spectra of O- and W-R-type stars

Credit: A. Sander



Spectroscopy

What Do Spectra Tell Us?

• Identify the type of the object
• Chemical composition
• Temperature, Preassure
• Chemical abundances
• Velocity (Radial and Rotational)
• Properties of the star and wind
• Strength of Magnetic field
• Physical changes in the star
• Material around stars
• Accretion disk
• To study the interstellar medium



Spectroscopy

What Do Spectra Tell Us?

• Identify the type of the object
• Chemical composition
• Temperature, Preassure
• Chemical abundances
• Velocity (Radial and Rotational)
• Properties of the star and wind
• Strength of Magnetic field
• Physical changes in the star
• Material around stars
• Accretion disk
• To study the interstellar medium

• All the information we gather about

stars is derived from analysis of their

radiation (spectra)

• Spectroscopy is a tool for unlocking

the secrets of star light



Stellar atmosphere

Why to study stellar atmospheres?

• The stellar atmosphere is all we really see from the star
• Its spectrum is (usually) the only information we get
⇒ Understand the spectrum to understand the star

• Only a proper modeling of the atmosphere can reproduce
the emergent spectrum

quasi-hydrostatic
regime

supersonic
wind-regime

Credit: A. Sander
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Stellar atmosphere

Why to study stellar atmospheres?

• The stellar atmosphere is all we really see from the star
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QUANTITATIVE SPECTROSCOPY

What is QS?

• Determination of physical parameters that (uniquely and
completely?) characterize an astronomical object

• QS is approached as an
�� ��inversion problem dobs = F(p)

• The process of calculating from a set of observations the
causal factors that produced them
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• Determination of physical parameters that (uniquely and
completely?) characterize an astronomical object

• QS is approached as an
�� ��inversion problem dobs = F(p)

• The process of calculating from a set of observations the
causal factors that produced them

• Observed data (spectra)
• Theoretical spectra (model atmosphere/line

formation codes)
• Comparison metrics (grid of models)

The ingredients



QUANTITATIVE SPECTROSCOPY

What is QS?

• Determination of physical parameters that (uniquely and
completely?) characterize an astronomical object

• QS is approached as an
�� ��inversion problem dobs = F(p)

• The process of calculating from a set of observations the
causal factors that produced them

• Information encoded in the observed data
(both quantity and quality, i.e., spectral range coverage, SNR, ...)

• Physics incorporated in the models
(i.e., assumptions/simplifications)

• Atomic data
• Comparison metrics (grid of models)
• Uncertainties/Errors

What should we worry about?



QUANTITATIVE SPECTROSCOPY

Processing of the observed spectrum

• To correct the observed spectrum for interstellar lines and
nebular contamination

• To correct the observed spectrum for cosmic rays and
telluric lines

• To improve the normalization



QUANTITATIVE SPECTROSCOPY

Processing of the observed spectrum

• To correct the observed spectrum for interstellar lines and
nebular contamination

• To correct the observed spectrum for cosmic rays and
telluric lines

• To improve the normalization

Calculating the grid of the models

• Define the free parameters (parameter space)
• No wind (4d) – Teff, logg, He
• With wind (8d) – Teff, logg, He, β, R∗, v∞, Ṁ
• + wind clumping, + elemental abundances ...

• Define the range of values for the various free parameters
• Fix some parameters
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Processing of the observed spectrum

• To correct the observed spectrum for interstellar lines and
nebular contamination

• To correct the observed spectrum for cosmic rays and
telluric lines

• To improve the normalization

Calculating the grid of the models

• Define the free parameters (parameter space)
• No wind (4d) – Teff, logg, He
• With wind (8d) – Teff, logg, He, β, R∗, v∞, Ṁ
• + wind clumping, + elemental abundances ...

• Define the range of values for the various free parameters
• Fix some parametersCredit: Miguel A. Urbaneja

QS tools in the OB literature



QUANTITATIVE SPECTROSCOPY

Martins at al., 2015



QUANTITATIVE SPECTROSCOPY

Najarro, Hanson & Puls (2011)



Stellar Atmospheres Models

Stellar parameters

• Effective temperature Teff [K]
• Surface gravity logg
• Helium abundance Y = H/He

• Stellar luminosity L∗ [L�]
• Stellar radii R∗ [R�]
• Micro-turbulent Velocity
• Chemical Abundances
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Stellar Atmospheres Models

Stellar parameters

• Effective temperature Teff [K]
• Surface gravity logg
• Helium abundance Y = H/He

• Stellar luminosity L∗ [L�]
• Stellar radii R∗ [R�]
• Micro-turbulent Velocity
• Chemical Abundances

Wind parameters

• Terminal velocity v∞ [km/s]
• Mass-loss rate Ṁ [M�/yr]

• Beta parameter β

Photospheric models

• DETAIL/SURFACE (Butler & Giddings, 1985)

• TLUSTY/SYNSPEC (Hubeny, 1988)

Photospheric + Wind models

• CMFGEN (Hillier & Miller, 1998)

• FASTWIND (Puls et al., 2005)

•
�� ��PoWR (Hamann & Gräfener, 2004)

• WM-basic (Pauldrach el al., 2001)



Stellar Atmospheres Models

What has to be included?

• Extreme non-LTE situation
• Model atoms for H, He, C, N, Fe, etc. (atomic

data)
• Line blocking/blanketing
• Modeling two regimes: Hydrostatic part

(core) + Supersonic wind (halo)
• Inhomogeneities
• Other physical effects

• Intense radiation field + Low densities in
lines and continuum forming regions
⇒ Collisions are less important in hot star
atmospheres

non-LTE



Stellar Atmospheres Models

What has to be included?

• Extreme non-LTE situation
• Model atoms for H, He, C, N, Fe, etc. (atomic

data)
• Line blocking/blanketing
• Modeling two regimes: Hydrostatic part

(core) + Supersonic wind (halo)
• Inhomogeneities
• Other physical effects



Stellar Atmospheres Models

What has to be included?

• Extreme non-LTE situation
• Model atoms for H, He, C, N, Fe, etc. (atomic

data)
• Line blocking/blanketing
• Modeling two regimes: Hydrostatic part

(core) + Supersonic wind (halo)
• Inhomogeneities
• Other physical effects

• Collisional cross sections

• OPAL PROJECT (Iglesias & Rogers 1996)

• OPACITY PROJECT (Seaton et al. 1992)

• IRON PROJECT (Hummer et al. 1993,

Witthoeft & Badnell 2008)

• Super-level approach - simplified
treatment of iron-group atoms (Anderson

1985, 1989)

Atomic data
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Stellar Atmospheres Models

What has to be included?

• Extreme non-LTE situation
• Model atoms for H, He, C, N, Fe, etc. (atomic

data)
• Line blocking/blanketing
• Modeling two regimes: Hydrostatic part

(core) + Supersonic wind (halo)
• Inhomogeneities
• Other physical effects
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Blanketing and blocking
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What has to be included?

• Extreme non-LTE situation
• Model atoms for H, He, C, N, Fe, etc. (atomic

data)
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Credit: A. Sander

Modeling two regimes



Stellar Atmospheres Models

What has to be included?

• Extreme non-LTE situation
• Model atoms for H, He, C, N, Fe, etc. (atomic

data)
• Line blocking/blanketing
• Modeling two regimes: Hydrostatic part

(core) + Supersonic wind (halo)
• Inhomogeneities
• Other physical effects

• Traditional core-halo approach: Two separate models

hydrostatic star

MODEL 1

MODEL 1

supersonic wind
MODEL 2MODEL 2

Credit: A. Sander

Modeling two regimes



Stellar Atmospheres Models

What has to be included?

• Extreme non-LTE situation
• Model atoms for H, He, C, N, Fe, etc. (atomic

data)
• Line blocking/blanketing
• Modeling two regimes: Hydrostatic part

(core) + Supersonic wind (halo)
• Inhomogeneities
• Other physical effects

• Modern approach, since ≈ 1990s:

Unified model atmospheres
(e.g. Hamann & Schmutz 1987, Gabler et al., 1989)

quasi-hydrostatic
regime

supersonic
wind-regime

Credit: A. Sander

Modeling two regimes
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• Simplification:
�� ��Clumping factor D =⇒ ρcl = Dρsw ;
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• 3-D description of clumping from other codes

Wind clumping
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What has to be included?
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data)
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Stellar Atmospheres Models

What has to be included?

• Extreme non-LTE situation
• Model atoms for H, He, C, N, Fe, etc. (atomic

data)
• Line blocking/blanketing
• Modeling two regimes: Hydrostatic part

(core) + Supersonic wind (halo)
• Inhomogeneities
• Other physical effects

• Magnetic field

• Rotation

• Pulsation ...

Other physical effects



Application - an example
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Application - an example

UV Optical near-IR
Tef Fe IV/V/VI He I 4471 / He II 4542 He I 2.112 / He II 2.189

Si II 4124 / Si III 4552 / Si IV 4116
logg – Hβ, Hγ, Hδ Brγ
v∞ N V 1240, Si IV 1393-1403 Hα, Hβ, Hγ, He I 4471 He I 2.058, He I 2.112, Brγ

C IV 1548-1550, N IV 1718 (if strong wind) (if strong wind)
Ṁ N V 1240, Si IV 1393-1403 Hα, He II 4686 Brγ

C IV 1548-50, N IV 1718
f (clumping) O V 1371, N IV 1718 Hα, He II 4686 Br10, Br11

P V 1118-1128
Surface Fe IV/V/VI C III 4637-40, C IV 5812, N III 2.247-2.251
abundances N III 4510-15, N IV 5200, Mg II 2.138-2.144

O II 4661, O III 5592... Si II 1.691-98
Fe II 1.688, Fe II 2.089

Magnetic – He I 4026, He I 4712 –
f eld He II 4200, He II 4542,

O III 5592, C IV 5812

From Martins et al., 2011

Diagnostic lines
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