QUANTITATIVE SPECTROSCOPY OF MASSIVE HOT STARS Lecture I: Basics of QS

Brankica Kubátová

Astronomický ústav AV ČR

Selected chapters on astrophysics

Astronomical Institute Faculty of Mathematics and Physics, Charles University November 16, 2022, Prague

Outline of the course

Lectures

- 1. Basics of the quantitative spectroscopy (November 16)
- 2. Spectral diagnostics of massive, hot stars I (November 23)
- 3. Spectral diagnostics of massive, hot stars II (November 30)
- 4. NLTE model atmospheres codes (PoWER code) (December 1)

Outline of the course

Lectures

- 1. Basics of the quantitative spectroscopy (November 16)
- 2. Spectral diagnostics of massive, hot stars I (November 23)
- 3. Spectral diagnostics of massive, hot stars II (November 30)
- 4. NLTE model atmospheres codes (PoWER code) (December 1)

Literatures

- Quantitative spectroscopy of hot stars Kudritzki, R. P.; Hummer, D. G., Annual Rev. Astron. Astrophys., Vol. 28, p. 303-345 (1990)
- A Modern Guide to Quantitative Spectroscopy of Massive OB Stars - Sergio Simón-Díaz, Springer International Publishing, pp. 155-187 (2020)

- Spectroscopy is the study of the interaction between matter and electromagnetic radiation
- The technique of splitting light (i.e., electromagnetic radiation) into its constituent wavelengths i.e., a spectrum

Credit: COSMOS - The SAO Encyclopedia of Astronomy

Credit: James B. Kaler, in "Stars and their Spectra," Cambridge University Press, 1989

Types of a spectra

- Continuous Spectrum stellar photosphere is blackbody with T_{eff}
- Emission line Spectrum requires atoms or ions in an excited state
- Absorption Line Spectrum cooler material in front of hotter material

Electromagnetic radiation

Similar in size to ...

atomic nucleus	water molecule	virus	blood cell	pencil lead	ladybug	human	Statue of Liberty
0		0		A		S	

Credit: NASA's Imagine

Electromagnetic radiation

Electromagnetic radiation

Credit: NASA's Imagine

HST

The Hubble Space Telescope 115-2500 nm

Credit: NASA's Imagine

UV spectra

 Merged spectrum of Copernicus and IUE UV high-resolution observations of the supergiant (2 Puppis (Pauldrach et al., 1994)

Optical spectra

ζ Pup observed with FEROS (Bouret et al., 2012)

X-ray spectra

 ζ Pup observed with XMM-Newton (Kahn et al., 2001) 0.40 F ⊳ N Ne IX 10⁻² photons cm⁻² Å⁻¹ s⁻¹ 0.30 Ne X 0.20 1 м_я х 0.10 0.00 20 25 15 30 35 Wavelength (Å)

SED of O-type stars

Fig. 1. Synthetic SEDs (in red) compared to flux calibrated + UBVJHK photometry for the target stars (in black). The distance, E(B - V) and luminosity were iterated to reach agreement between models and observations (see Sect. 4.1). For plotting purpose, the fluxes were scaled by a factor (10⁴ for all stars but HD 66811 and HD 21088), where factors 10⁶ and 10¹³ were used, respectively.

Credit: Bouret et al., 2012

Spectra of O- and W-R-type stars

What Do Spectra Tell Us?

- Identify the type of the object
- Chemical composition
- Temperature, Preassure
- Chemical abundances
- Velocity (Radial and Rotational)
- Properties of the star and wind
- Strength of Magnetic field
- Physical changes in the star
- Material around stars
- Accretion disk
- To study the interstellar medium

Why to study stellar atmospheres?

- The stellar atmosphere is all we really see from the star
- Its spectrum is (usually) the only information we get
 ⇒ Understand the spectrum to understand the star
- Only a proper modeling of the atmosphere can reproduce the emergent spectrum

Why to study stellar atmospheres?

- The stellar atmosphere is all we really see from the star
- Its spectrum is (usually) the only information we get
 Understand the spectrum to understand the star
- Only a proper modeling of the atmosphere can reproduce the emergent spectrum

Why to study stellar atmospheres?

- The stellar atmosphere is all we really see from the star
- Its spectrum is (usually) the only information we get ⇒ Understand the spectrum to understand the star
- Only a proper modeling of the atmosphere can reproduce the emergent spectrum

Why to study stellar atmospheres?

- The stellar atmosphere is all we really see from the star
- Its spectrum is (usually) the only information we get \Rightarrow Understand the spectrum to understand the star
- Only a seling of the atmosphere can reproduce the eme

- Determination of physical parameters that (uniquely and completely?) characterize an astronomical object
- QS is approached as an (inversion problem) $d_{obs} = F(p)$
- The process of calculating from a set of observations the causal factors that produced them

- Determination of physical parameters that (uniquely and completely?) characterize an astronomical object
- QS is approached as an (inversion problem) $d_{obs} = F(p)$
- The process of calculating from a set of observations the causal factors that produced them

- Determination of physical parameters that (uniquely and completely?) characterize an astronomical object
- QS is approached as an (inversion problem) $d_{obs} = F(p)$
- The process of calculating from a set of observations the causal factors that produced them

- Determination of physical parameters that (uniquely and completely?) characterize an astronomical object
- QS is approached as an (inversion problem) $d_{obs} = F(p)$
- The process of calculating from a set of observations the causal factors that produced them

What is QS?

- Determination of physical parameters that (uniquely and completely?) characterize an astronomical object
- QS is approached as an (inversion problem) $d_{obs} = F(p)$
- The process of calculating from a set of observations the causal factors that produced them

The ingredients

- Observed data (spectra)
- Theoretical spectra (model atmosphere/line formation codes)
- Comparison metrics (grid of models)

- Determination of physical parameters that (uniquely and completely?) characterize an astronomical object
- QS is approached as an (inversion problem) $d_{obs} = F(p)$
- The process of calculating from a set of observations the What should we worry about?
 - Information encoded in the observed data (both quantity and quality, i.e., spectral range coverage, SNR, ...)
 - Physics incorporated in the models (i.e., assumptions/simplifications)
 - Atomic data
 - Comparison metrics (grid of models)
 - Uncertainties/Errors

Processing of the observed spectrum

- To correct the observed spectrum for interstellar lines and nebular contamination
- To correct the observed spectrum for cosmic rays and telluric lines
- To improve the normalization

Processing of the observed spectrum

- To correct the observed spectrum for interstellar lines and nebular contamination
- To correct the observed spectrum for cosmic rays and telluric lines
- To improve the normalization

Calculating the grid of the models

- Define the free parameters (parameter space)
 - No wind (4d) T_{eff}, log g, He
 - With wind (8d) T_{eff} , $\log g$, He, β , R_* , v_{∞} , \dot{M}
 - + wind clumping, + elemental abundances ...
- Define the range of values for the various free parameters
- Fix some parameters

Processing of the observed spectrum

Calc

- To correct the observed spectrum for interstellar lines and nebular contamination
- To correct the observed spectrum for cosmic rays and
 QS tools in the OB literature

	Mokien+2005	Lefever+2006	Simón-Díaz +2011	Irrgang+2014		
Targets	O Stars	B Stars	O Stars	B stars		
Metrics	MD	MD	MD	MD		
Models	FASTWIND	FASTWIND	FASTWIND	ADS		
Parameters				13		
Method	GA	Grid		Grid		
# of models	7000/star	3x10 ⁵	2x10 ⁵	~2x10 ⁶		
Comment	on the fly	Grid		Grid		
MD – Minimum distance. ADS – Atlas + Detail + Surface GA – Genetic algorithm.						

Credit: Miguel A. Urbaneja

ers

Martins at al., 2015

"Surface abundances of Galactic ON stars"

Observations: high-resolution, high SNR optical spectra.

Parameters: Teff, logg, He/H, CNO.

Comment: No wind analysis ("reasonable" values adopted).

Models: CMFGEN (Hillier & Miller 1998).

Sample size: 12 stars.

Najarro, Hanson & Puls (2011)

"L-band spectroscopy of Galactic OB-stars"

Observations: optical spectra, H-,K- and L-band.

Parameters: Teff, logg, He/H, β , Q, ... (#11)

Comment: clumping law with 4 parameters.

Models: CMFGEN (Hillier & Miller 1998).

Sample size: 10 stars.

Stellar parameters

- Effective temperature T_{eff} [K]
- Surface gravity log g
- Helium abundance Y = H/He
- Stellar luminosity L_* $[L_{\odot}]$
- Stellar radii $R_* [R_{\odot}]$
- Micro-turbulent Velocity
- Chemical Abundances

Stellar parameters

- Effective temperature T_{eff} [K]
- Surface gravity log g
- Helium abundance Y = H/He
- Stellar luminosity L_* $[L_{\odot}]$
- Stellar radii R_* $[R_{\odot}]$
- Micro-turbulent Velocity
- Chemical Abundances

Wind parameters

- Terminal velocity v_{∞} [km/s]
- Mass-loss rate \dot{M} [M_{\odot}/yr]
- Beta parameter β

Stellar parameters

- Effective temperature T_{eff}
- Surface gravity log g
- Helium abundance Y =
- Stellar luminosity L_* $[L_{\odot}]$
- Stellar radii R_* $[R_{\odot}]$
- Micro-turbulent Velocity
- Chemical Abundances

Wind parameters

- Terminal velocity v_{∞} [km/s]
- Mass-loss rate \dot{M} [M $_{\odot}/yr$]
- Beta parameter β

Photospheric models

- DETAIL/SURFACE (Butler & Giddings, 1985)
- TLUSTY/SYNSPEC (Hubeny, 1988)

Stellar parameters

- Effective temperature T_{eff}
- Surface gravity log g
- Helium abundance Y =
- Stellar luminosity L_* $[L_{\odot}]$
- Stellar radii R_* $[R_{\odot}]$
- Micro-turbulent Velocity
- Chemical Abundances

Wind parameters

- Terminal velocity v_{∞} [km]
- Mass-loss rate \dot{M} [M $_{\odot}/yr$]
- Beta parameter β

Photospheric models

- DETAIL/SURFACE (Butler & Giddings, 1985)
- TLUSTY/SYNSPEC (Hubeny, 1988)

Photospheric + Wind models

- CMFGEN (Hillier & Miller, 1998)
- FASTWIND (Puls et al., 2005)
- PoWR (Hamann & Gräfener, 2004)
- WM-basic (Pauldrach el al., 2001)

Stellar parameters

- Effective temperature T_{eff}
- Surface gravity log g
- Helium abundance Y =
- Stellar luminosity L_* $[L_{\odot}]$
- Stellar radii R_* $[R_{\odot}]$
- Micro-turbulent Velocity
- Chemical Abundances

Wind parameters

- Terminal velocity v_{∞} [km]
- Mass-loss rate \dot{M} [M $_{\odot}/yr$]
- Beta parameter β

Photospheric models

- DETAIL/SURFACE (Butler & Giddings, 1985)
- TLUSTY/SYNSPEC (Hubeny, 1988)

Photospheric + Wind models

- CMFGEN (Hillier & Miller, 1998)
- FASTWIND (Puls et al., 2005)
- PoWR (Hamann & Gräfener, 2004)
- WM-basic (Pauldrach el al., 2001)

What has to be included?

- Extreme non-LTE situation
- Model atoms for H, He, C, N, Fe, etc. (atomic data)
- Line blocking/blanketi
- Modeling two regimes (core) + Supersonic wi
- Inhomogeneities
- Other physical effects

non-LTE

 Intense radiation field + Low densities in lines and continuum forming regions
 ⇒ Collisions are less important in hot star atmospheres

What has to be included?

- Extreme non-LTE situation
- Model atoms for H, He, C, N, Fe, etc. (atomic data)
- Line blocking/blanketing
- Modeling two regimes: Hydrostatic part (core) + Supersonic wind (halo)
- Inhomogeneities
- Other physical effects

What has to be included?

- Extreme non-LTE situation
- Model atoms for H, He, C, N, Fe, etc. (atomic data)
- Line blocking/blanketing
- Modeling two regimes (core) + Supersonic wi
- Inhomogeneities
- Other physical effects

Atomic data

- Collisional cross sections
 - OPAL PROJECT (Iglesias & Rogers 1996)
 - OPACITY PROJECT (Seaton et al. 1992)
 - IRON PROJECT (Hummer et al. 1993,

Witthoeft & Badnell 2008)

 Super-level approach - simplified treatment of iron-group atoms (Anderson 1985, 1989)

What has to be included?

- Extreme non-LTE situation
- Model atoms for H, He, C, N, Fe, etc. (atomic data)
- Line blocking/blanketing
- Modeling two regimes: Hydrostatic part (core) + Supersonic wind (halo)
- Inhomogeneities
- Other physical effects

What has to be included?

- Extreme non-LTE situation
- Model atoms for H H data)
- Line blocking/blc
- Modeling two reg (core) + Supersor
- Inhomogeneities
- Other physical ef

Blanketing and blocking

What has to be included?

- Extreme non-LTE situation
- Model atoms for H, He data)
- Line blocking,
- Modeling two (core) + Supe
- Inhomogenei
- Other physico

Blanketing and blocking

Figure 2: Effects of line blanketing (solid: blanketed model, dashed: model without blanketing) on the flux distribution (long F_{c_i} (Jansky) vs. log λ (λ), left panel) and temperature structure ($T(10^4 K)$ vs. log n_{c_i} right panel) in the atmosphere of a late E-hypergiant. Blanketing blocks flux in the UV, redistributes it towards longer wavelengths and causes back-warming. From Puls et al. (2008).

Credit: J. Puls

What has to be included?

- Extreme non-LTE situation
- Model atoms for H, He, C, N, Fe, etc. (atomic data)
- Line blocking/blanketing
- Modeling two regimes: Hydrostatic part (core) + Supersonic wind (halo)
- Inhomogeneities
- Other physical effects

What has to be included?

- Extreme non-LTE situation
- Model atoms for data)
- Line blocking/blo
- Modeling two reg (core) + Supersor
- Inhomogeneities
- Other physical eff

Credit: A. Sander

Modeling two regimes

What has to be included?

- Extreme non-LTE situation
- Model atoms for data)
- Line blocking/blo
- Modeling two reg (core) + Supersor
- Inhomogeneities
- Other physical eff

Modeling two regimes

Traditional core-halo approach: Two separate models

What has to be included?

- Extreme non-LTE s
- Model atoms for data)
- Line blocking/blo
- Modeling two reg (core) + Supersor
- Inhomogeneities
- Other physical eff

Modeling two regimes

Modern approach, since ≈ 1990s:
 Unified model atmospheres

(e.g. Hamann & Schmutz 1987, Gabler et al., 1989)

What has to be included?

- Extreme non-LTE situation
- Model atoms for H, He, C, N, Fe, etc. (atomic data)
- Line blocking/blo
- Modeling two reg (core) + Supersor
- Inhomogeneities
- Other physical eff

Wind clumping

- Simplification: Clumping factor $D \implies \rho_{cl} = D\rho_{sw}$; void inter-clump medium; monotonic velocity field
- Microclumping approach clumps are optically thin at all frequencies (FASTWIND; CMFGEN; PoWR)
- 3-D description of clumping from other codes

What has to be include

- Extreme non-LTE s
- Model atoms for data)
- Line blocking/blc
- Modeling two reg (core) + Supersor
- Inhomogeneities
- Other physical eff

Wind clumping

- Simplification: Clumping factor $D \implies \rho_{cl} = D\rho_{sw}$; void inter-clump medium; monotonic velocity field
- Microclumping approach clumps are optically thin at all frequencies (FASTWIND; CMFGEN; PoWR)
- 3-D description of clumping from other codes

Šurlan et al., 2012

What has to be included?

- Extreme non-LTE situation
- Model atoms for H, He, C, N, Fe, etc. (atomic data)
- Line blocking/blanketing
- Modeling two reg (core) + Supersor
- Inhomogeneities
- Other physical eff

Other physical effects

- Magnetic field
- Rotation
- Pulsation ...

Application - an example

Application - an example

Diagnostic lines

	UV	Optical	near-IR
Tef	Fe IV/V/VI	He I 4471 / He II 4542	He I 2.112 / He II 2.189
		Si 11 4124 / Si 111 4552 / Si 1V 4116	
logg	-	Ηβ, Ηγ, Ηδ	Brγ
V∞	N v 1240, Si IV 1393-1403	Hα, Hβ, Hγ, He I 4471	He I 2.058, He I 2.112, Bry
	CIV 1548-1550, NIV 1718	(if strong wind)	(if strong wind)
M	N v 1240, Si IV 1393-1403	Ha, He II 4686	Brγ
	C IV 1548-50, N IV 1718		
f (clumping)	O V 1371, N IV 1718	Hα, He II 4686	Br10, Br11
	P v 1118-1128		
Surface	Fe IV/V/VI	C III 4637-40, C IV 5812,	N III 2.247-2.251
abundances		N III 4510-15, N IV 5200,	Mg II 2.138-2.144
		O II 4661, O III 5592	Si 11 1.691-98
			Fe II 1.688, Fe II 2.089
Magnetic	-	He I 4026, He I 4712	-
f eld		He II 4200, He II 4542,	
		O III 5592, C IV 5812	

From Martins et al., 2011

Selected chapters on astrophysics

THANK YOU FOR YOUR ATTENTION!

Brankica Kubátová

E-mail: brankica.kubatova@asu.cas.cz Hompage: http://stelweb.asu.cas.cz/ brankica/