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Introduction



Low mass planets

Massive planets

Intermediate mass planets

Introduction

Mp ≤ 15M⊕

15M⊕ > Mp < 1MJup

Mp ≥ 1MJup



(a) MWC 758 
(Reggiani et al. 2018).

(c) RX J1615.3-3255 
(Boer et al. 2016). 

(e) HL-TAU 
(Carrasco-González 
et al. 2016).

(b) HD100453 
(Benisty et al. 2017). 

(d) GM Aurigae (Macías 
et al. 2018).

(f) TW Hya (Boekel et 
al. 2017).

Observed Protoplanetary Disks 



Protoplanetary gaseous dusty discs Andrews et al. (2018)
Protoplanetary discs are composed of gas 

and a small fraction of dust

 (∼ 1% of the total gas). 

Figure 1. Gallery of continuum emission images (1.25 mm) for  the discs in the DSHARP sample. 

Recent observational studies show 
different structures in dust density. 
These can be caused by the interaction 
of the protoplanetary disk with planets
of different masses forming and/or
 migrating.



Aggregates/fractals –  
∼μm up to a unspecified upper size.  
The first product of dust coagulation.  
They can be very porous. 

Boulders - meter size. 
The meter-size scale is approximately 
the dividing line between particles that 
are strongly influenced by the gas and 
particles that travel in Kepler orbits. 

(planetary)Embryos 
– km to∼ . 
Bodies that emerge  
out of a planetesimal  
population due to a runaway 
 growth coagulation process. 

103 10M⊕

Gas giants – � .  
Consist mostly of gas, but 
(in the core accretion model)  
thought to have formed only 
after the creation of a ≈10  
Earth mass solid core. 

100M⊕

Grains – up to 1 μm.  
These are either inherited from the 

collapse  
of the parent molecular cloud or 
have been condensed from the 
cooling protoplanetary nebula. 

Pebbles – sub-mm to meter. 
We simply mean compact objects 
larger than grains but smaller than 
boulders. Chondrules (∼100 μm) and 
Calcium-Aluminium Inclusions (CAIs; 
≈cm), both found in meteorites, are 
examples. 

Planetesimals – sub-km  
to several ∼  km.  

These are bodies that start  
to bind material by their gravity.  
They are traditionally 
considered to be the planetary  
‘building blocks’  
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Rocky planets (not shown 

in this Figure )  
– up to several Earth 

masses.  

Dust in protoplanetary disks 



Types of planetary 
migration 



The presence of a planet orbiting the star creates a non-axisymmetric time  
varying gravitational potential.  

The gas reacts to this perturbation in the potential by the formation of density  
waves. 

These density waves create additional perturbations in the potential which  
are seen by the planet as well.  

The torques originating from these perturbations change the planet’s angular  
momentum and give rise to migration.  

We here consider migration due to the gravitational interaction with the  
gaseous disk only.  

Migration can also occur due to the interaction with the planetesimals disk.  
Orbital decay due to direct gas drag is negligible at planetary masses. 

Basic mechanism of planetary migration 



Some more used notation:

ΩK Keplerian orbital frequency 

q ≡
Mp

M⋆
Mass ratio between the planet and the star 

H The disk thickness 

Σ(r) Surface density of the disk

h ≡ H(r)/r Aspect ratio of the disk

ρ Volumetric density of the gas

v Gas velocity

rp Orbital radius of the planet



Types of planetary migration 

For small mass planets the density waves propagate through the disk

Type I migration  
Migration mode of small mass planets, no gap 



- For larger mass planets, a gap opens in the disk
Type II migration  
Migration mode of large mass planets, with gap  



- In this type of migration, sub-giant planets with masses of the order of 
the mass of the planet Saturn are considered embedded in massive 
discs.

Type III migration (migration runaway) 
Gap is partially opened. 





Migration type I: 
 Linear theory  



The hydrodynamical equations that govern the flow are 
the continuity, momentum and energy equations:

∂ρ
∂t

+ ∇ ⋅ (ρv) = 0,

ρ ( ∂v
∂t

+ v ⋅ ∇ ⋅ v) = − ∇P + Fext,

∂e
∂t

+ ∇ ⋅ (ev) = − P∇ ⋅ v

ρ = ρ0 + ρ1

e = e0 + e1

P = P0 + P1

v = (u, v, w)
u = u1
v = v0 + v1

w = w1

Small perturbations



Resonant torques 
Imagine a planet in orbit about a star. The rotation frequency  
of the planet is given by its Keplerian frequency, 

Ωp =
GM⋆

r3
p

Then, there are special resonant places in the disk. Two types must 
be distinguished:  

1) Corotation resonance: located where  Ω = Ωp

If the disc is Keplerian (i.e., if we neglect gas pressure and self-gravity), then 
the corotation resonance is found at the planet’s orbital radius. 

2) Lindblad resonances: located where    m(Ω − Ωp) = ± κ

- with   an integer. m

- And κ2 = R
dΩ2

dR
+ 4Ω2



a) for the + sign (rotation faster than planet): The inner Lindblad resonances  
b) the - sign (rotation slower than planet): The outer Lindblad resonances 

The actual position of these resonances can be readily obtained:  

rILR = rp ( m
m − 1 )

−2/3

rOLR = rp ( m
m + 1 )

−2/3

Figure. A schematic diagram of various resonance locations for a 
planet of mass Mp = 15 M⊕. 





A full analysis considers the evolution of linear perturbations in a fluid disk, and 
was first applied to planet-disc interactions by Goldreich & Tremaine (1979).  
The first step is to linearize the hydrodynamic equations, and to decompose the 
perturbation to the Keplerian potential due to the planet into Fourier modes. For 
example, the potential of the planet is expressed in terms of azimuthally periodic 
components characterized by , the inverse wave number. m

Φm(r, ϕ, t) = Φm(r)cos[m(ϕ − Ωpt)]

The next step is to compute the response of the disc to the perturbations, and from 
this it is possible to calculate the total torque on the planet by summing up the 
torques originating at each resonance.  





The important result of such complex calculations is that the total angular 
momentum exchange between disc and planet can be expressed as the sum of the 
torques exerted at discrete resonances in the disc.  
These resonances correspond to the points in the disc where the planet excites 
waves, which take the form of spiral density waves.  
The importance of the resonances can be understood by the following argument: the 
torques at non-resonant locations in the disc do not interfere constructively, and 
consequently cancel out when averaged over the orbit.  
Using such an approach, Goldreich & Tremaine (1979) derived an expression for the 
torque at the Lindblad resonance:  

Γm = mπ2 Σm

rdD/dr [r
dΦm

dr
+

2Ω
Ω − Ωp

Φ]
r=rL

where   D(r) = κ(r)2 − m(Ωp − Ω(r)) .



Since then, several groups performed similar calculations. For example, Tanaka et al 
(2002) studied the three-dimensional interaction between a planet and a three 
dimensional isothermal disk. Assuming that the perturbation are small enough, they 
used linear theory to derive the relevant torques. After some significant calculations, 
they obtain the following expression for the torque exerted on the planet: 

Γ = − (1.364 + 0.541σ)(
Mp

M⋆

rpΩp

cs )
2

Σpr4
pΩ4

p

Here  is defined by the exponent of the assumed power law surface density of the 
disk 

σ

Σ = Σ0 ( r
r0 )

σ

The corresponding inward migration timescale is given by: 

τmig = (2.7 + 1.1σ)−1 M⋆

Mp

M⋆

Σpr2
p

Ω−1
p ∝

1
Mp



Type I migration 

The migration is determined by the net torque exerted onto the planet (Goldreich 
& Tremaine 1979; Tanaka et al. 2002). This torque can be written: 

ΓTotal = ∑
ILR

ΓLR + ∑
OLR

ΓLR + ΓCR

This torque can be expressed in a general way as: 

ΓTotal =
1
γ

(c0 + C1σ + C2β)Γ0

where  is given as: Γ0

Γ0 = ( q
h )

2

Σ2
pr2

pΩ2
p

and  and  are constants and  are the exponents of the assumed 
power-law distribution of density and temperature.

C0, C1 C3 σ, β



- We can now calculate the migration velocity.

The conservation of angular momentum implies: 

dJp

dt
= ΓTotal

The angular momentum of the planet is given by:  

Jp = Mp(GM⋆rp)1
2

From which we obtain the migration velocity: 

drp

dt
= − 2rp

ΓTotal

Jp

Depending upon the sign of the torque (i.e. upon the signs of the Ci and 
the slopes of the density and temperature distribution), the migration can 
proceed inwards or outward.  

 



For an isothermal disk with a MMSN profile ( ) migration is inwards and rapid. σ = 1.5

Migration timescales
Note that before the transition to type II sets in,  

the migration timescale in type I are very short, yrs. 
  

∼ 104

Afterwards, migration timescale 
increase by 1-2 orders of 

magnitude from type I to type II. 

  



For type I this means: Planets seem to migrate so fast that they 
should all fall into the star within the lifetime of the disk (unless they 

grow extremely rapid)!  

These very short migration timescales represent another major 
issue in modern planet formation theory. 

 

Therefore, simple linear theory for isothermal disks cannot be the final word!  

- If this were true, planetary cores should not survive in the disc, 
in evident contrast with the observation that many 

planetary systems (like ours:)



Coorbital thermal torques on low-mass protoplanets  
(Linear Theory)



Coorbital Thermal Torques on low-mass protoplanets Masset (2017)

The distance to the planet's corotation is 
considered to be much smaller than the 

size of the perturbation     
(xp < < λc)

xp = ( σ
3

+
β + 3

6 ) h2rp

λc =
χ

qΩpγ
.



Gap formation  

The angular momentum is transported from the inner part of the disk to the 
planet and from the planet to the outer part of the disk. Hence, gas inside the 
planet looses angular momentum and moves inwards while gas outside gains 
angular momentum and moves outwards. For this mechanism to result in the 
opening of a gap, two conditions have to be met. 



Condition I (thermal condition):  
Hill sphere of a planet must be comparable to the disk scale height. If this is not 
true the disc will be able to accrete past the planet away from the disc mid-
plane.  
This can be expressed by the condition: 

rH = rp (
Mp

3M⋆ )
1/3

≥ H

Which implies a mass ratio planet/star of: 

q =
Mp

M⋆
≥ 3 ( H

r )
3

p
= 3h3

p

Typically the disk aspect ratio is  and   

corresponding to  .
h ≈ 0.05 q ≥ 1.25 × 10−4

M > 0.13MJupiter



Condition II (viscous condition): 
Viscous effect must not be able to close the gap.  
This can be expressed by the condition: 

τclose ≥ τopen

In terms of torque, this condition is written 

( dJ
dt )

LR
≥ ( dJ

dt )
visc

Considering the impulse approximation: 
8

27
G2M2

prpΣ
9Ω2

pb3
min

≥ 3πνΣr2
pΩp

With  and  we can get: ν = αcsH bmin = RH

q ≥
243π

8
αh2

Typically ,  so that ,  

corresponding to .   

h ≈ 0.05 α = 102 q ≥ 2.39 × 10−3

M > 2.5MJupiter



Once the planet is massive enough to open gap, the gas is being pushed away from 
the planet and hence the torques diminish. The planet is kept in the middle of the 
gap, as if it were to be closer to the inner edge, it would gain angular momentum, 
and it would migrate back outwards, while the opposite effect would happen close 
to the outer edge. In a static disk, the planet would also be static. As the disk is itself 
evolving on the viscous timescale, also the planet’s orbit is evolving on this 
timescale:  

τmig =
r2
p

ν
=

r2
p

αcsH
=

1
α ( rp

H )
2

Ω−1
p

where we have used the fact that the viscosity is given by  and the sound  
speed is given as .

ν = αcsH
cs = HΩp



Note that in the case of type II migration, the migration timescale is independent 
of the mass of the planet and only depends upon the mass of the star and the 
characteristics of the disk. We have however seen that this simple picture is valid 

only if the planet is not too massive .  

One therefore distinguishes two regimes: 

(B =
3πΣ0R2

0

Mp
> > 1)

Disk dominated type II (B>>1): 

τmig = τvisc

Planet dominated type II (B<<1): 

τmig ∼ τviscB

Therefore, in the planet dominated regime, migration is slower. 



Observed gaps








