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“Overview of recent advances 1n planetary migration: from theoretical models
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to high-resolution 3D multi-fluid simulations™
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Introduction

Low mass planets M, < 15Mg

Kepler-20e Venus Kepler-20f

‘ ‘ " ass planets 15Mg > Mp < 1MJup

Earth-class Planets Line Up

M, > IM,,,
Massive planets



Observed Protoplanetary Disks

(a) MWC 758
(Reggiani et al. 2018).

(¢) RX J1615.3-3255
(Boer et al. 2016).

(¢) HL-TAU
(Carrasco-Gonzalez
et al. 2016).
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(b) HD100453
(Benisty et al. 2017).
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(d) GM Aurigae (Macias
et al. 2018).
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gaseous dusty discsj
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| Protoplanetary

HD 142666

Elias 20

Recent observational studies show
different structures in dust density.
These can be caused by the interaction |[JREaiEE Cllas 24 Clias 27 Oadr 33
of the protoplanetary disk with planets
of different masses forming and/or .
migrating.

WSB 52 WaOph 6 HD 163296

Figure 1. Gallery of continuum emission images (1.25 mm) for the discs in the DSHARP sample.



Dust in protoplanetary disks

Grains-up to 1 pm.
These are either inherited from the
collapse
of the parent molecular cloud or
have been condensed from the
cooling protoplanetary nebula.

grains

aggregates

boulders

Boulders - meter size.

The meter-size scale is approximately
the dividing line between particles that

are strongly influenced by the gas and
particles that travel in Kepler orbits.

Planetesimals - sub-km
to several ~10% km.

These are bodies that start
to bind material by their gravity.

Rocky planets (not shown
in this Figure )
- up to several Earth

They are traditionally masses

considered to be the planetary
‘building blocks’

embryos

glants

- planetesimals

103 km 10 km
Gas giants - [2]100M,,.
Consist mostly of gas, but

(planetary)Embryos

-10°km to~10Mg,

Bodies that emerge

out of a planetesimal
population due to a runaway
growth coagulation process.

thought to have formed only
after the creation of a =10
Earth mass solid core.

(in the core accretion model)



Types of planetary
migration



Basic mechanism of planetary migration

The presence of a planet orbiting the star creates a non-axisymmetric time
varying gravitational potential.

The gas reacts to this perturbation in the potential by the formation of density
waves.

These density waves create additional perturbations in the potential which
are seen by the planet as well.

The torques originating from these perturbations change the planet’s angular
momentum and give rise to migration.

We here consider migration due to the gravitational interaction with the
gaseous disk only.

Migration can also occur due to the interaction with the planetesimals disk.

Orbital decay due to direct gas drag is negligible at planetary masses.



Some more used notation:

Q Keplerian orbital frequency

M
q Vp Mass ratio between the planet and the star
*

H The disk thickness
h = H(r)/r Aspect ratio of the disk
2(r) Surface density of the disk

P Volumetric density of the gas

\4 Gas velocity

" Orbital radius of the planet



Types of planetary migration

For small mass planets the density waves propagate through the disk

Type I migration
Migration mode of small mass planets, no gap
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- For larger mass planets, a gap opens 1n the disk

Type II migration
Migration mode of large mass planets, with gap




- In this type of migration, sub-giant planets with masses of the order of
the mass of the planet Saturn are considered embedded in massive
discs.

Type III migration (migration runaway)
Gap 1s partially opened.
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Migration type 1.
Linear theory



The hydrodynamical equations that govern the flow are
the continuity, momentum and energy equations:

P V. (v =0
- - (pv) = 0,
ot P

ot
oe
—+V-(ev)=—PV v
ot
p =Pyt P1 V=(uvw)
l/t=l/t1
e =¢e)+ e
V=1Vt V



Resonant torques

Imagine a planet 1n orbit about a star. The rotation frequency
of the planet 1s given by its Keplerian frequency,

o _ oM,
P 7’5

Then, there are special resonant places 1n the disk. Two types must
be distinguished:

1) Corotation resonance: located where €2 = €2,

If the disc 1s Keplerian (i.e., if we neglect gas pressure and self-gravity), then
the corotation resonance 1s found at the planet’s orbital radius.

2) Lindblad resonances: located where m (€2 — Qp) =+ K

- with m an integer.

2
- And K2 = Rdi + 4072
dR



a) for the + sign (rotation faster than planet): The inner Lindblad resonances

b) the - sign (rotation slower than planet): The outer Lindblad resonances

The actual position of these resonances can be readily obtained:

—2/3

—2/3

Figure. A schematic diagram of various resonance locations for a
planet of mass M, = 15 M,.
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THE EXCITATION OF DENSITY WAVES AT THE LINDBLAD AND
COROTATION RESONANCES BY AN EXTERNAL POTENTIAL?
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ABSTRACT

We calculate the linear response of a differentially rotating two-dimensional gas disk to a
rigidly rotating external potential. The main assumptions are that the sound speed is much
smaller than the orbital velocity and that the external potential varies on the scale of the disk
radius. We investigate disks both with and without self-gravity.

The external potential exerts torques on the disk only at the Lindblad and corotation
resonances. The torque is positive at the outer Lindblad resonance and negative at the inner
Lindblad resonance; at corotation the torque has the sign of the radial gradient of vorticity
per unit surface density. The torques are of the same order of magnitude at both types of
resonance and are independent of the sound speed in the disk.

The external potential also excites density waves in the vicinity of the Lindblad and corotation
resonances. The long trailing wave is excited at a Lindblad resonance. It transports away from
the resonance all of the angular momentum which is deposited there by the external torque.
Short trailing waves are excited at the corotation resonance. The amplitudes of the excited
waves are the same on both sides of the resonance and are small unless the disk is almost
gravitationally unstable. No net angular momentum is transported away from the corotation
region by the waves. Thus the angular momentum deposited there by the external torque
accumulates in the gas.

We briefly discuss the behavior of particle disks and prove that the external torques on
particle disks are identical to those on gas disks.

Subject headings: galaxies: structure — hydrodynamics — stars: stellar dynamics



A full analysis considers the evolution of linear perturbations in a fluid disk, and
was first applied to planet-disc interactions by Goldreich & Tremaine (1979).

The first step 1s to linearize the hydrodynamic equations, and to decompose the
perturbation to the Keplerian potential due to the planet into Fourier modes. For
example, the potential of the planet 1s expressed 1n terms of azimuthally periodic
components characterized by m, the inverse wave number.

D, (r,p,1) = D, (r)cos[m(¢ — Q1]

The next step 1s to compute the response of the disc to the perturbations, and from
this 1t 1s possible to calculate the total torque on the planet by summing up the
torques originating at each resonance.
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The important result of such complex calculations 1s that the total angular
momentum exchange between disc and planet can be expressed as the sum of the
torques exerted at discrete resonances 1n the disc.

These resonances correspond to the points in the disc where the planet excites
waves, which take the form of spiral density waves.

The importance of the resonances can be understood by the following argument: the
torques at non-resonant locations in the disc do not interfere constructively, and
consequently cancel out when averaged over the orbit.

Using such an approach, Goldreich & Tremaine (1979) derived an expression for the
torque at the Lindblad resonance:

. 1)
B dd

m m

" \ rdD/dr dr Q — Qp )

where D(r) = k(r)? — m(Qp — Q(r)).



Since then, several groups performed similar calculations. For example, Tanaka et al
(2002) studied the three-dimensional interaction between a planet and a three
dimensional 1sothermal disk. Assuming that the perturbation are small enough, they
used linear theory to derive the relevant torques. After some significant calculations,
they obtain the following expression for the torque exerted on the planet:

MP FPQP 2
I'= —(1.364 + 0.5410) IO

* CS

Here o 1s defined by the exponent of the assumed power law surface density of the
disk

The corresponding inward migration timescale 1s given by:

M, M 1
" *2 le o
M, Z,7; M,

Tpig = (2.7 + 1.106)7!



lype I migration

The migration 1s determined by the net torque exerted onto the planet (Goldreich
& Tremaine 1979; Tanaka et al. 2002). This torque can be written:

I Tt = Z I'rr+ Z I'rr+1cr
ILR OLR

This torque can be expressed 1n a general way as:
1
I Tt = ?(Co + Cio+ G Pl

where I 1s given as: 2
_ (1) v2,.202
FO = <z> Zpl"pr

and C,, C; and C; are constants and o, f are the exponents of the assumed
power-law distribution of density and temperature.



- We can now calculate the migration velocity.

The conservation of angular momentum implies:

dJ,

_ T
At Total

The angular momentum of the planet 1s given by:
1
J,=M,(GM,r,)>

From which we obtain the migration velocity:

di’p 1_WTotazl
— = =2r
dt P

P



For an isothermal disk with a MMSN profile (c = 1.5) migration is inwards and rapid.

Migration timescales

Note that before the transition to type Il sets 1n,
the migration timescale in type I are very short, ~ 10%*yrs.
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For type I this means: Planets seem to migrate so fast that they
should all fall into the star within the lifetime of the disk (unless they
grow extremely rapid)!

- If this were true, planetary cores should not survive in the disc, 3 EYES ON THE SOLAR SYSTEM
in evident contrast with the observation that many ]
planetary systems (like ours:)

~ URANUS

<y FUPITER

® syN

~\ SATURN NEPTUNE

These very short migration timescales represent another major
issue 1n modern planet formation theory.

Therefore, simple linear theory for isothermal disks cannot be the final word!




Coorbital thermal torques on low-mass protoplanets
(Linear Theory)




Coorbital Thermal Torques on low-mass protoplanets ERUESEICUE)
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Figure 1. Perturbation of surface density o'(*) in units of y(y — 1)L/ xc? due to the singular heat release L5(r) (left) and perturbation o'(") arising from the
heat ‘dipole’ —L8'(x)8(y)8(2), in units of y(y — 1)Lk./xc? (right). The map of the right can also be regarded as the derivative of the perturbation of surface
density with respect to the planet position x,. These maps have been obtained by summing 40 000 Fourier components in geometric sequence from &, = 104k,
to ky = 10*k. The levels on the left map are in geometric sequence with a ratio of V2 from —3 x 1072 to —0.48, while the levels on the right map are in
geometric sequence with a ratio of 2 from £1 x 102 to +0.16. The thicker contour corresponds to the null level. The vertical arrows depict schematically
the Keplerian flow. When the distance to the planet is largely smaller than A, (i.e. for [xk.| < 1 and |yk.| < 1), diffusion dominates and the perturbation has
spherical symmetry. For distances comparable to or larger than A, advection takes over and the perturbation is distorted under the action of the Keplerian flow.

5.5 A simple expression for the total thermal torque

The total thermal torque is the sum of the heating torque and of the
cold thermal torque:

rih, = Pl + i, 142
while the total torque acting on the planet is
r total F thermal + I adiabatic. (143)

The heating torque given by equation (109) can be cast in a simple
form using the critical luminosity L, of equation (132). We obtain

heati -1 Xp L
Cpnte — 1. 6ITZZF°’ (144)
while the total thermal torque is

—1x L
ree =161 (= _1)r,. 145
This expression can also be recast under the convenient form
1 (H L

ree =1.617— — — 1| ATy, 146

therml y n(lc) (Lc ) ’ =

where 7 is given by equation (139), A, by equation (120), L. by
equation (132) and I'y by equation (134).



Gap formation

The angular momentum 1s transported from the inner part of the disk to the
planet and from the planet to the outer part of the disk. Hence, gas inside the
planet looses angular momentum and moves inwards while gas outside gains
angular momentum and moves outwards. For this mechanism to result in the
opening of a gap, two conditions have to be met.



Condition I (thermal condition):

Hill sphere of a planet must be comparable to the disk scale height. If this 1s not
true the disc will be able to accrete past the planet away from the disc mid-

plane.

This can be expressed by the condition:

Which implies a mass ratio planet/star of:

Typically the disk aspect ratio is & ~ 0.05 and g > 1.25 x 10~
corresponding to M > 0.13Mj, .. -



Condition II (viscous condition):
Viscous effect must not be able to close the gap.

This can be expressed by the condition:

> T

Telose = open

In terms of torque, this condition 1s written

< dJ > < dJ >
—_— Z —_—
dt LR dt Visc

Considering the impulse approximation:
8 GzMgrpZ
27 9Q2h3.

‘DY min

2
> 37w2rp Qp

With v = ac,H and b,,,, = R;; we can get:

2437 2

ah

q =

Typically 4 = 0.05, a = 10? so that g > 2.39 X 1073
corresponding to M > 2.5M, .-



Once the planet 1s massive enough to open gap, the gas 1s being pushed away from
the planet and hence the torques diminish. The planet 1s kept in the middle of the
gap, as 1if it were to be closer to the inner edge, it would gain angular momentum,
and 1t would migrate back outwards, while the opposite effect would happen close
to the outer edge. In a static disk, the planet would also be static. As the disk 1s 1tself
evolving on the viscous timescale, also the planet’s orbit 1s evolving on this

timescale:

2 2 1 /7 2

p p p _1
Tmig — — Qp

U ac.H a \ H

where we have used the fact that the viscosity 1s given by v = ac H and the sound

speed is given as ¢, = HQ.,.



Note that in the case of type II migration, the migration timescale 1s independent
of the mass of the planet and only depends upon the mass of the star and the
characteristics of the disk. We have however seen that this simple picture 1s valid

. . , 32 RS
only if the planet is not too massive | B = >> 1.

M,
One therefore distinguishes two regimes:

Disk dominated type II (B>>1):

7’-mig = Tyisc

Planet dominated type II (B<<1):

T.. ~7T. B

mig Visc

Therefore, 1n the planet dominated regime, migration is slower.
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HL Tau @ ALMA 1.3 mm

The most detailed and highest quality image of a
circumstellar disk ever obtainead

ALMA Partnership, Brogan+2014



HL Tau @ ALMA 1.3 mm

7 pairs of BRIGHT and DARK rings

ALMA Partnership, Brogan+2014
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