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Migration runaway
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The coorbital torque 1s assumed to come from orbit crossing fluid elements
that exchange angular momentum with the planet when they execute a U-
turn at the end of horseshoe streamlines.

When the planet migrates inward, the fluid elements of the inner disk
undergo one such exchange as they pass to the outer disk.

The angular momentum they gain is removed from the planet, and this
corresponds to a negative contribution to the corotation torque, which scales
with the drift rate.

In addition, the material trapped in the coorbital region drifts radially with
the planet, giving a positive contribution to the corotation torque, which also
scales with the drift rate.

These two contributions do not cancel out 1f the coorbital region 1s depleted,
in which case there i1s a net corotation torque that scales with the drift rate
and the mass deficit in the coorbital region and has the same sign as the drift
rate.
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where M p =M, + M4 corresponds to an effective planet mass, and where ém =
dmax, s — My, 1s called the coorbital mass deficit.



This leads to a positive feedback on the migrating planet. In particular, 1f
the coorbital mass deficit 1s larger than the planet mass, the migration rate
undergoes a runaway that can vary the protoplanet semimajor axis by 50%
over a few tens of orbits.

This can happen only 1f the planet mass 1s sufficient to create a dip or gap
in 1ts surrounding region and 1if the surrounding disk mass 1s larger than the
planet mass.

This typically corresponds to planet masses in the sub-Saturnian to Jovian
mass range embedded in massive protoplanetary disks.
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Fig. 6.14 Left: illustration of the flow asymmetry ahead of and behind a Saturn-mass planet under-
going rapid inward runaway migration. Right: type III planetary migration seen as a feedback loop.
The latter remains stable if the open-loop transfer function &/ x % < 1, or ém < M.



l’
i
!
A
]
i
.
8
:
]
;

IS

0.90

0.80

0.70

Semi—major axis

0.60

0.50

IIIIIIIIIIlllllIIIIIIIIIIIIIIIIIIIT]IIIIIIIIII]IIIIIIII
llllllllllllllllllllllll llllllllllllllllll llllll Lol

0.40 A A I A l A A A A l | A A A 1 L I | A l A A L I

100 150 200 250
Time (orbits)

o
n
o

F1G. 2.—Semimajor axis as a function of time, for the different values of
S,, n ranging from 0 to 8 from top to bottom. The behavior is meaningless
when a gets close to the grid inner boundary, located at Ry, = 0.4.



Runaway migration 1s a good candidate to account for the orbital
characteristics of close orbiting giant planets, most of which have sub-Jovian
masses.

Further, 1n the runaway regime, migration can be directed outward, which
makes this regime potentially rich 1in a variety of important effects in shaping a
planetary system during the last stages of its formation.



Numerical models on
planetary migration



On the wake generated by a planet in a disk

For linear waves, any wave quantity X can be written in the form

X(r, ¢, 1) = Re{X(r) expli®,(r, $, 01}, )

where X is an amplitude that varies slowly with r, while
P, = Jk(r) dr + m(¢p — 1) (2)

is a phase that varies rapidly with . Here k is the radial
wavenumber, which is real in regions of space where the wave
propagates, and m is the azimuthal wavenumber.

Ogilvie & Lubow (2002)

€D=t+£<r3/2 —%lnr— 1).

Figure 4. Left: Predicted shape of the spiral wake for € = 0.05, based on equations (13) and (24). The dotted line represents the corotation circle, r = 1. The
planet is located at (1,0), and the outer radius plotted is r = 3. Right: Numerically calculated spiral wake for € = 0.05. The enthalpy perturbation is plotted

using a linear grey-scale from negative (black) to positive (white). The maximum intensity corresponds to a fractional surface density perturbation, at r = 1, of
104(M,/M).

Two-dimensional disk model

The vertically integrated continuity equation

02
a_t + V°(Ev) = 0.

The components of the momentum equation are
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Here 2 denotes the surface density
3= j pdz,

with p being the density, P the vertically integrated pressure, and
fr and fy the viscous force per unit area acting in the r and ¢
directions, respectively. The gravitational potential, ®, is given by

GM Gm,
E \/,.2 +rp — 2rrycos(¢ — ¢,)

G !
+ ’:pr-rp+GJ gr$r°r’, (13)
rp s I

where Mx and mj, are the masses of the central star and the
protoplanet, respectively, and r, and ¢, are the radial and
azimuthal coordinates of the protoplanet.



Numerical models
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Fig. 6.12 Perturbation of the disc’s density by an embedded planet. Left: adiabatic 2-dimensional
disc. The density lobes within the coorbital region, which arise from the advection of entropy, help
identify the (tiny) radial width of the planet’s horseshoe region. Middle: case of an isothermal 2D
disc with turbulence induced by stochastic stirring. Right: case of an isothermal 3D disc invaded by
MHD turbulence due to the MRI (the density in the disc mid plane is displayed). In the middle and
right panels, the turbulent density perturbation is comparable to the perturbed density associated
to the planet’s wakes.



There has been strong interest (e.g. Nelson & Papaloizou 2004, Uribe et al.
2011) 1n studying planet-disk interactions in turbulent disks, where the
turbulence 1s magnetically generated by the magneto-rotational instability
(MRI), instead of the laminar disks which we have used in the above analysis.
Such laminar disks are strictly speaking not self-consistent, as they assume an
abnormal viscosity (thought to be due to turbulence) without actually taking
the consequence of turbulent motions into account.

More realistically, angular momentum transport itself derives from turbulence,
which 1s accompanied by a spatially and temporally varying pattern of density
fluctuations 1n the protoplanetary disk. These fluctuations will exert random
torques on planets of any mass embedded within the disk.

In such turbulent disks, it 1s found that for low mass planets, Type I migration
1s no longer effective due to large fluctuations in the torque. The fluctuations
in the torque created by the perturbations in the density can be larger than the
mean torque expected for standard Type I migration in a laminar disk.
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The plots show the logarithm of the disk density in the mid plane (top row) and in an azimuthal cut at the position

of the planet (bottom row) for q = 10_5 (~3 Mearth), q = 10_4 (~30 Mearth) and q = 10_3 (~1 MJup). The lett plot
shows no significant perturbation of the density by the planet, and no spiral arms are seen, indicating that random

torques are dominating.



Physical model (MHD case)

Magnetohydrodynamical equations describing the gas flow in 3D-MHD disks,
considering a frame rotating with a uniform angular velocity €2, are given by
the equation of continuity

2 - V)p—pV
—_— = —(u- — -u,
Y pP—P
the gas momentum equation
ou | X B
—=—(u-V)u——Vp—VCI>+J — QX (QXr)—2Q Xu,

ot p p
and the induction equation

ﬁ—V><[ x B —nJ]
or . 11

where p is the gas density, u is the gas velocity, @ is the gravitational potential,
and p 1s the pressure given as

<
|

pey

with ¢, the sound speed.



Table 2. Summary of Numerical Models in Section 3.

Disk model Planet Mass Orbit

Density slope Magnetic field  Viscosity R T T T S T

Mp[Mg, Mj,,] dp plasma—_3 a-viscosity — h;=0.8 |
e 0.0002 1 |
ARI1 1 Mg Migrating 1.5 No 2.5 x 1074 ]
AR2 10Mg Migrating 1.5 No 2.5 x 1074
AR2a 10Mg Migrating 0.5 No 95x10
AR3 30Mg Migrating 1.5 No 2.5 x 1074
AR4 100 Mg Migrating 1.5 No 2.5 x 1074
AR5 1.05Mjyp Fixed 1.5 No 2.5 x 107*
AR6 3.15M3yp Fixed 1.5 No 2.5 x 10 * =
AR7 10.5Mup Fixed 1.5 No 2.5 x 10~ 0.0001
MHD-disk ]
MR1 1 Mg Migrating 1.5 10° No
MR2 10Mg Migrating 1.5 103 No
MR2a 10Mg Migrating 0.5 103 No
MR2b 10Mg Migrating 1.5 2 x 10? No
MR3 30Mg Migrating 1.5 103 No
MR4 100Mg Migrating 1.5 103 No ]
MR5 1.05Mjyp Fixed 1.5 10° No 0.0000 - —
MR6 3.15Mp Fixed 1.5 10° No 8 9
MR7 10.5M3yp Fixed 1.5 10° No

NoOTE—"Here Mjup = 318 Mg Earth masses.

In the induction equation J = p IV x B, is the current density and # is the
resistivity modeled as in Lyra et al. (2015):

r—r r—rn,

n(r) = ny—— |tanh — tanh — |




We use a reference frame centred on the star and rotating with the angular

frequency Q = QplA(, where Qp = \/ GM .,/ rg is the angular velocity of the

planet (with r, the planet's orbital radius) and k is a unit vector along the
rotation axis. The gravitational potential ® is given by

ind?®

where
GM GM dm(r’
q>S=_GM*, b, =— — D, 4= pr-rp+G[ ( )r-r’,
r \1? + €2 i y
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Fast inward migration
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Fast inward migration

Therefore, the migration timescale is given as

For a locally isothermal 3D disk, with a power-law surface
density profile, the total torque (Lindblad plus corotation), I,

acting on a planet was estimated by Tanaka et al. (2002). They
found that

[ = (1.364 + 0.541¢,)T,

where I = (Mp/M*)z(rpr/ CS)ZZPI’;QI%.

From this equation, the type I radial migration speed of the planet
can be calculated from the conservation of angular momentum, as

drp T
L2 =2 —,
dt "L,

with L, = M,,, /| GM 1, the planet's angular momentum.
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Figure 13. Streamlines overplotted in the gas density at the midplane for the MR2a model calculated at t = 5, t = 60, and ¢ = 80 orbits (top, middle and bottom panels,
respectively).



Non-1sothermal
migration
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Radiation hydrodynamic simulations treating correctly the energy transport in the disk find that
below a certain threshold mass, migration can be directed outwards, due to a different density
distribution around the planet.



Migration of Earth-sized planets in 3D radiative discs

Cold thermal Torques

The motion of the gas is described by the Navier—Stokes equations
in a rotating frame in spherical coordinates as follows.

(1) Continuity equation:

0p

— + V. = 0,

5, TV (o)

where p 1s the density of the gas and v = (v,, v,, vg) the velocity,
with v, = rsin(0)(w + €2), where w 1s the azimuthal angular
velocity in the rotating frame.



(11) Equations for the momenta. The Navier—Stokes equations for
the radial momentum J, = pv,, the polar momentum Jy = prvy and
the angular momentum J,, = prsin (6)v, = pr” sin *0(w + Q) read

U+ V- (Jv)—p[9+i ¢

or
+2(fr = 50

U V- (Jpv) = pr[ 0 10
+- (f9 )

% 4 V- (J,v) = prsin(0)[— - gw

+;(f<p rsm9 ago)]

The function f = (f;, f,, fo) 1s the divergence of the stress tensor
(see, for example, Tassoul 1978). The potential ® acting on the disc
consists of the contribution of the star ®, = —GM, /r and planets
®,, plus indirect terms that arise from the primary acceleration due
to the planets and discs gravity.



3L 4 V. (Ev) = —pV-v+ QF
—V.-DVT | (3)

where E is the internal energy E = pc,T, T is the temperature of
the disc and c, is the specific heat at constant volume. On the right-
hand side, the first term denotes the compressional heating, O the
expression for the viscous heating and DVT is the radiative flux.

The system of equations is closed using an ideal gas EOS:
P = Ry, pT/p with mean molecular weight u = 2.3(g mol™') for
standard solar mixture. Taking into account that

E = RospT /u(y — 1),
this relates to the pressure as

P=E(l—1).



Lega et al. (2014)

Table 1. Simulations parameters.
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Figure 1. Evolution of the total torque with time for a planet of 5 Mg and
two different resolutions corresponding to n = 3 and 4 cells in the horseshoe
region.
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Figure 5. Radial torque density normalized with respect to I'g. The Lind-
blad torque scales with the square of the mass ratio g, while unexpected
contributions come from the close vicinity of the planets for mp < 10 Mg;.
For comparison the radial torque density obtained for an adiabatic simulation
is shown.

(1) The Lindblad torque scales as expected (Goldreich &
Tremaine 1980; Paardekooper et al. 2010) with I, i.e.
with the square of the mass ratio q.

(11) Compared with the adiabatic case, where the
component of the corotation torque due to the temperature
gradient saturates, we notice that the total torque acting on
aM, = 10M, has a positive contribution just inside r = 1;
also a small torque excess is observed for r > 1.

(111) The corotation torque is expected to scale with I',. At
r < 1, we observe a positive spike due to the entropy-
related part of the corotation torque (non-linear
contribution or horseshoe drag).

(iv) A new and totally unexpected feature appears for r >

1. We observe a negative spike which is not seen for
M, > 10Mg

(v) The positive and negative spikes contributions appear
to be asymmetric, the negative spike providing a larger
contribution which is responsible for the negative total
torque, 1.e. for the transi- tion from outward to inward
migration.
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Planet heating prevents inward migration of planetary cores

Hot thermal torques

Benitez-Llambay et al. (2015)
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Figure 1 | Comparison of the torques in the cases with and without heating.
The blue curve shows the torque radial density (that is, torque exerted by
rings of unitary radial width upon the planet) in the non-heating case and the
red curve when the heating is included. Their difference shows the heating
torque density (black). This calculation corresponds to an embryo planet of
3Mg that is located at 5.2 AU from its central star.
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Figure 2 | Heating torque for different growth timescales. The curves are
labelled with the planetary mass-doubling time (that is, the time it takes the
accreting planet to double its mass) and show the torque exerted on an embryo
planet of 3Mg over the first 118 years of our calculation (ten orbits). With
low or no heating, the planet migrates inward while for larger rates (mass
doubling time shorter than 92,000 years) it migrates outward. The dashed line
corresponds to no migration. The vertical arrows show the magnitude of the
heating torque.
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where the material is at rest in the planetary frame.
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Numerical study of coorbital thermal torques on cold or hot satellites

Chametla & Masset (2020)

Protoplanetary disc

We consider a three-dimensional, non-self-gravitating inviscid

gaseous disc whose motion is governed by the following equations:
the equation of continuity which reads

dhp+V-(pv) =0, (1)
the equation of conservation of momentum which reads

0 (pv) + V- -(pv®@v+pl)=—-Vp - pV, (2)



and the equation of evolution of the density of internal energy e,
which reads

de+V-.-(ev) =—pV-v—-—V.Fy+ 8. ()

In these equations p, v, and ® denote the density, the velocity, and the
gravitational potential, respectively. The source term for the energy
(arising from the heat release of the planet) 1s denoted with S and 7
represents the unit tensor. Here, F  1s the heat flux, given by

(4

P

where x is the thermal diffusivity.

The gas pressure p obeys the equation of state of 1deal gases:

p=(y — De, (5)

where y 1s the adiabatic index.
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Figure 1. Left: Perturbation of surface density o/’ normalized to y(y — 1)L/ xc?. Solid lines: isocontours of the fields obtained after 14 orbital periods of the
planet. Dashed lines: Isocontours of the perturbation predicted by linear theory. Here, x = r — r, and y = r,¢. This map is obtained by subtracting two runs
(a hot one and a cold one) with a planet centred on corotation, as described in Section 4.1. Right: Cut of the absolute value of o'©® along the axis y = 0. The
black circles represent the values measured in the simulation, while the solid black line represents the value expected from linear theory. The squares (in purple)
represent the ratio of the value measured in the numerical simulation to the value expected from linear theory. The light horizontal band delineates the region

where these values coincide to within =5 per cent.

2.00

107

0.6

10"
0.4

1077 4

0.2

0.0
1072

-0.2

Normalised pertubation

: /4 10-3
~2 ‘7 4 A 1/ ‘ —0.4

-3 T T T - T —-0.6
3 2 1 0 1 2 3

0
z/\ /e

\ \ R [ 10-4 - - . - . 0.00

Figure 2. Left: Approximation of the partial derivative of the perturbed surface density with respect to x,, o' M, normalized to y(y — 1)L/(x c2).). The line
style is the same as that of Fig. 1. This map has been obtained using the four runs described in Section 4.2. Right: Cut of the absolute value of the map along the
y = 0 axis. The symbols have same meaning as in Fig. 1. The light horizontal band shows again the region where numerical and theoretical values coincide to

within £+5 per cent.
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Figure 6. Torque measured in the different runs mentioned in the text (square
symbols). The colour matches that of Velasco-Romero & Masset (2019): we
use green for adiabatic calculations, blue for cold runs, and red for hot runs.
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Figure 5. Normalized total torque as a function of time for different cases.
The dashed curve shows the torque in the adiabatic disc described in the text.
The thick lines show the torque in a disc with similar parameters, except
that is has a finite thermal diffusivity, for different planetary luminosities: the
bottom curve shows the torque for a non-luminous planet, while the other
curves show the torque for a planet of increasing luminosity, from 0.5L, to
2L, by steps of 0.5L., from bottom to top. The horizontal dotted line shows
the torque value expected in the adiabatic disc according to Jiménez & Masset
(2017). The right vertical axis corresponds to the usual normalization of the
torque.
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Figure 8. Perturbation of density arising from heat release (obtained by subtracting a hot run and a cold run), integrated in colatitude and normalized to
y(y —1)L/x c;", at t = 2 orbits, for the four planet masses considered in the text. The vertical dashed line shows the corotation. The isocontours have same
value in the four plots. They start at 0.01 and are in geometric sequence with ratio v/2.
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Migration type II: Simulations

Numerical simulations (Crida et al 2006) have led to the following approximate
combined gap opening criterion:

3 H 50
P = + <1
4 Ry gR

Qpa2
where X =

1s the Reynolds number.
v
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Gaps formed in disks without
embedded planets



The equations are

Op i

= + V() =0, (1)

0

(9Ltv +V- [pva - BBT] + VP = —pVO, (2)

o V- [(E+Pyo—(- B)B] = ~pv- VOV - [(7- /)xB], and
(3)

aa—f+V><(v><B):—Vx(n-J) (4)

with the gas density p, the velocity vector v, the magnetic field
vector B, the total pressure P, = P + 0.5B2, the gravitational
potential @, the total energy E = pe +0.50v* + 0.5B* with the in-
ternal energy pe = P/(I' — 1), the current density J = V X B,
and the Ohmic resistivity n. We considered Ohmic diffusion.



Model name N, X Ny X N, Ar[AU]:Af[rad]:A¢ [rad] D2G Inner orbits (@) ')
D2G_e-4 256 x 128 x 512 20-100:0.72:2n 104 800 0.013 0.04
D2G_e-2 256 x 128 x 512 20-100:0.72:2n 102 1045 0.003 0.09
Disk parameter Stellar parameters
M =0.085 M, %5=594gcem™? A8 T, =4000 K 095L, M,=05M, spectral type ~K
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Fig. 2. Radial surface density profiles, plotted in steps of 200 inner or-
bits, from initial (black solid) to final (solid, dotted, dashed, and dashed-
dotted) for model D2G_e-2 (blue) and model D2G_e-4 (red).

Radius [AU]

Fig.3. Time-averaged radial profile of the accretion stress a (solid
line) and the normalized surface density £/, (dashed line) for mod-
els D2G_e-2 (top) and D2G_e-4 (bottom).

Flock et al. (2015)



Gaps formed by MRI
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Turbulent stress within dead zones and magnetic field dragging induced by Rossby vortices

Chametla et al. (2023)
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Planets outside the gaps



Low-mass planets falling into gaps can survive inward migration

RAUL O. CHAMETLA ‘2! AND F. JAVIER SANCHEZ-SALCEDO 2?2

Governing equations

We consider a 3D non-self-gravitating gas disc whose
evolution is governed by the following equations:

Op+ V- (pv) =0, (1)
O(pv) + V- (pv@ v +pl) = =Vp— pV®, (2

where p and v denote the density and velocity of the
gas, respectively. Furthermore, ® denotes the gravita-
tional potential, | is the unit tensor, and p is the gas pres-
sure. For the latter, we consider the globally isothermal
equation of state



Gap modeling through radial viscosity transitions

v = oacsH

with

T
a:ao{1—|—§ tanh(

In Eq. (10) a9 = 1073,

{ fo ety & |

h1

)

1 =19

ho

)




Table 1. Initial conditions and main parameters of our sim-
ulations (rg denotes a reference radius®).

Parameter

Value [code units]

0.004-

S _‘
= 0.0021

—— t=5000 orbits

Central star

e

0.000

0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.3

0.2-
N

0.1

t = 5000 orbits

Ao = 10-3

0.50 0.75

1.00

1.25

Mass of the star M, 1.0
Disk
Aspect ratio at ro h 0.05
Surface density at rq o 6.3662 x 104
Surface density slope o 1.0
Temperature slope 8 0.0
a-viscosity o 1x10°?
Planet
Planet mass interval Mp [3x107°,1.577
Planet location (ro, @p.0p) (1,0,0)
Softening length € 0.1H(rp)
Global mesh
Radial extension r [0.5,2.0]
Azimuthal extension ¢ [0, 2]
Polar extension 0 [Z - 3h, I]
Radial resolution Ny 768 cells
Azimuthal resolution N 3200 cells
Polar resolution Ny 76 cells
Radial spacing A Aritmethic
Additional
parameters
Reference frame C Corotating
Frame angular speed  Q(r;) Q,
Gravitational constant G 1.0
Orbital period at r, Ty 202}

NoTE—"We consider rg = 5.2 au and M, = 1M; when
scaling back to physical units.
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Planet migration becomes stagnant near the edge of the gap!
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Horseshoe streamlines, M, =150M ¢
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