"Overview of recent advances in planetary migration: from theoretical models to high-resolution 3D multi-fluid simulations"

PhD. Raúl Ortega Chametla Charles University, Faculty of Mathematics and Physics, Astronomical Institute Prague, Czech Republic

December 6, 2023

PROFILES OF DISKS IN ROTATIONAL AND HYDROSTATIC EQUILIBRIUM

We assume that the sound speed is a power law of the spherical radius:

$$c_s^2(r) = \left(c_s^0\right)^2 \left(\frac{r}{r_0}\right)^{-\beta},$$
 (1)

where r_0 is an arbitrary radius at which the sound speed is c_s^0 . Such disks are often said to be locally isothermal. The aspect ratio has the radial dependence

$$h(r) = \frac{c_s(r)}{v_K(r)} \propto r^{(1-\beta)/2},$$
 (2)

exponent f of the power law given by Equation (2):

where $v_K(r) = \sqrt{GM_{\star}/r}$ is the circular Keplerian velocity at distance r from the central mass. We call the flaring index the

$$\frac{1-\beta}{2}$$
 (3)

The equations that determine the rotational and vertical equilibria of the disk are respectively, in spherical coordinates:

$$-\frac{\partial_r \left(\rho_0 c_s^2\right)}{\rho_0} + \frac{v_\phi^2}{r}$$

and

$$-\frac{1}{r}\frac{\partial_{\theta}\left(\rho_{0}c_{s}^{2}\right)}{\rho_{0}}+\frac{v_{\phi}^{2}}{r}\cot\theta=0.$$
 (5)

If we denote $L = \log(\rho_0/\rho_{00})$, $m = v_{\phi}^2/c_s^2$, $u = -\log(\sin \theta)$, $v = \log(r/r_0)$, and $K = GM_{\star}/[c_s(r_0)^2 r_0]$, we can transform Equation (5) into

 $\partial_u L + m = 0$

and Equation (4) into

 $-\beta + \partial_{\nu}L - m + K \exp(-2f\nu) = 0, \qquad (7)$

$$-\frac{GM_{\star}}{r^2} = 0 \qquad (4)$$

= 0 (6)

to *u*, we are led to

 $\partial_{v}m +$

from which we infer

$$\partial_{u^k}^k m = (-1)^k \partial_{v^k}^k m. \tag{9}$$

The rotational equilibrium in the midplane reads, from Equation (4),

$$m(u = 0, v) = -\beta - \xi + K \exp(-2fv),$$
 (10)

hence, for any $k \ge 1$, we have in the midplane (u = 0)

$$\partial_{v^k}^k m = (-2f)^k K \exp(-2fv), \qquad (11)$$

so that, by virtue of Equation (9), we have, also in the midplane,

$$\partial_{u^k}^k m = (2f)^k K \exp(-2fv), \qquad (12)$$

where we have made use of the assumption that the sound speed depends only on the spherical radius. Differentiating Equation (6) with respect to v and Equation (7) with respect

$$\partial_u m = 0,$$
 (8)

from which we can reconstruct the value of m at an arbitrary height above the midplane:

$$m(u, v) = [\exp(2fu) - 1]K \exp(-2fv) + m(u = 0, v)$$

= $-\beta - \xi + K \exp[2f(u - v)],$ (13)

which specifies the field of rotational velocity. The density field is found by integrating Equation (6), which yields

$$L = L_{eq} + (\beta + \xi)u - K \frac{e^{-2fv}}{2f} [\exp(2fu) - 1], \quad (14)$$

where the subscript eq denotes the midplane value. Using the more conventional notation, Equations (13) and (14) read respectively

$$v_{\phi}(r,\,\theta) = v_K(r) \Big[(\sin\,\theta)^{-2f} - (\beta + \xi) h^2 \Big]^{1/2}, \qquad (15)$$

where $v_K(r)$ is the circular Keplerian velocity at distance *r* from the central mass, and

$$\rho_0(r,\,\theta) = \rho_{\rm eq}(r)(\sin\,\theta)^{-\beta-\xi} \exp\left[h^{-2}\left(1\,-\,\sin^{-2f}\,\theta\right)/2f\right].$$
(16)

For a "flat" disk, in which the temperature is inversely proportional to the radius ($\beta = 1$ and f = 0), the integration of Equation (6) eventually yields

$$\rho_0(r, \theta) = \rho_{\rm eq}(s)$$

For globally isothermal disks, Equations (15) and (16) can be recast respectively as

$$\rho(r, \theta) = \rho_{eq} \sin^{-\xi} \theta \exp\left[h^{-2}\left(1 - \frac{1}{\sin\theta}\right)\right]$$
(18)
$$v_{\phi}^{2}(r, \theta) = \frac{GM_{\star}}{r\sin\theta} - \xi c_{s}^{2} = \frac{GM_{\star}}{R} - \xi c_{s}^{2}.$$
(19)

$$(r, \theta) = \rho_{eq} \sin^{-\xi} \theta \exp\left[h^{-2}\left(1 - \frac{1}{\sin\theta}\right)\right]$$
(18)
$$v_{\phi}^{2}(r, \theta) = \frac{GM_{\star}}{r\sin\theta} - \xi c_{s}^{2} = \frac{GM_{\star}}{R} - \xi c_{s}^{2}.$$
(19)

The rotational velocity is therefore independent of the altitude at a given cylindrical radius in globally isothermal disks.

 $(\sin \theta)^{-\beta-\xi+h^{-2}}.$ (17)

Finally, for $z/R \ll 1$, we have $u \approx \frac{1}{2}(z/R)^2$, hence Equation (14) can be recast in the following approximate form, when $fu \ll 1$:

$$L \approx L_{\rm eq} - \frac{1}{2} h(r_0)^{-2} \left(\frac{r}{r_0}\right)^{-2f} \left(\frac{z}{R}\right)^2, \qquad (20)$$

$$\rho_0(z) \approx \rho_{\rm eq} \exp(-z^2/2H^2),$$
(21)

from which we can infer the relationships

 $\Sigma_0(r) =$

and

 $\alpha = \xi$

where use has been made of the relationship $h^{-2} \gg |\xi + \beta|$. As a consequence, we recover the well-known approximation

$$=\sqrt{2\pi}\rho_{\rm eq}H$$
 (22)

$$f - 1 - f. \tag{23}$$

Planet dusty disk model

$$\partial_t \rho_g + \nabla \cdot (\rho_g \mathbf{v}) = 0$$

$$\partial_t (\rho_g \mathbf{v}) + \nabla \cdot (\rho_g \mathbf{v} \otimes \mathbf{v} + p\mathbf{I}) = -\nabla p - \rho_g \nabla \Phi - \mathbf{f}_d$$

Dust feedback on the gas is included!

