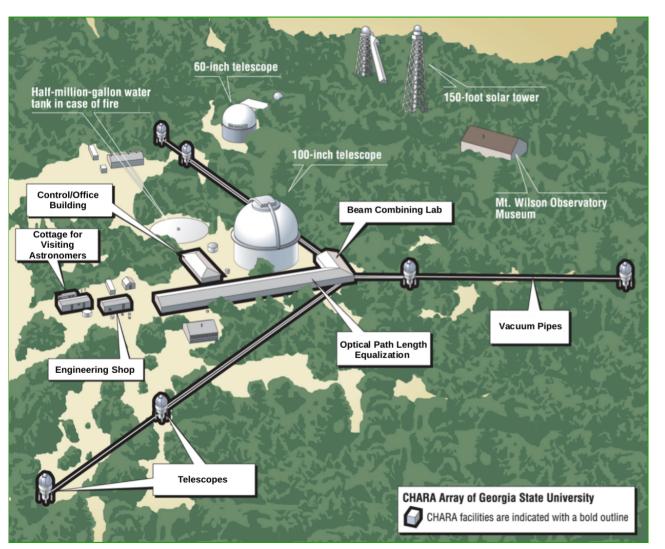
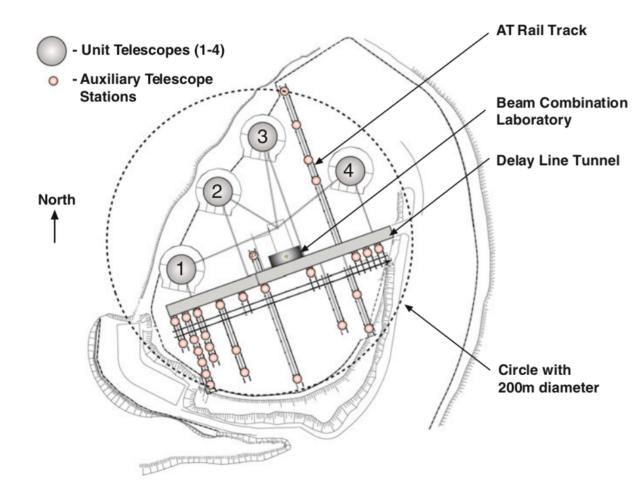

Optical Interferometry


Fonsource

Lecture 1 + HOM SOURCE **Basic principles and History** Atmospheric turbulence and how to overcome it Geometrical Delay Projected Baseline Subsystems of an interferometric observatory -CHARA and VLTI Interferometric observables Lecture 2 Science case – classical Be stars **OIFITS** format Telescope 1 Telescope 2 Baseline JMMC tools for interferometry (https://www.jmmc.fr/) Lecture 3 Relay Optics Parametric fitting of interferometric data with PMOIRED (https://github.com/amerand/PMOIRED) Beam Combination Movable Delay Line

Optical Interferometry



The CHARA Array

- Six 1-m fixed telescopes with TelAO in Y-shaped configuration
- B_{min} = 33 m; B_{max} = 330 m
- $\theta \sim 0.2$ mas in *R* to ~ 0.5 mas in *H*
- Vacuum beam relay pipes & LabAO before optical lab
- Beam combiners
 - Classic/CLIMB 2T/3T in K' band
 - PAVO 2T in R band
 - MIRC-X and MYSTIC 6T simultaneously in H and K band
 - SPICA 6T visible (commissioning)
 - SILMARIL 3T H & K (commissioning)
- Decommissioned beam combiners
 - VEGA 2T in visible
 - FLUOR 2T in K' band

VLTI

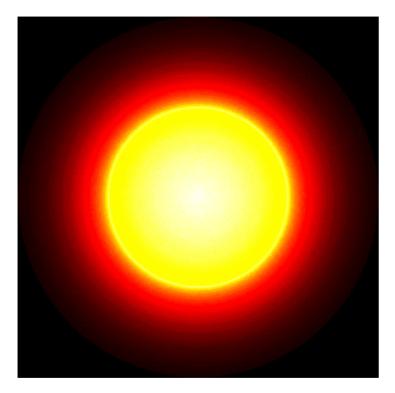
- Four 8-m fixed telescopes or four 1.8-m movable telescopes
- $B_{min} \sim 11 m$, $B_{max} \sim 200 m$
- $\theta \sim 1$ mas in *H*, *K*, ~ 3 mas in *L*, *M*
- Enables dual-field observations
- Beam combiners
 - PIONIER 4T in *H* band
 - MATISSE 4T in LMN bands
 - GRAVITY 4T in *K* band with dualfield mode – great boost in sensitivity
 - GRAVITY+ Upgrade of observatory infrastructure and UT telescope AO (in progress)
- Decommissioned beam combiners
 - AMBER 3T K band
 - MIDI 2T N band
 - VINCI VLTI commissioning instrument

Interferometric observables

From the interference pattern on the detector, we measure proxies of the complex visibility:

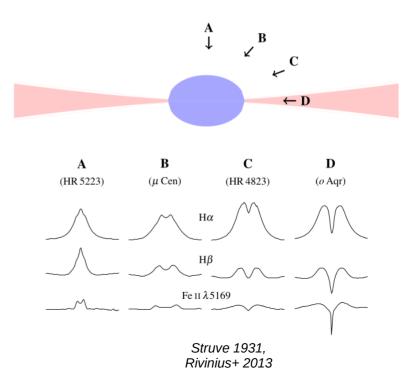
- Visibility modulus |V| / visibility squared V²
 - The basic observable for all beam combiners
 - Size and point-symmetric shape of the object
 - Visibility decreasing with increasing baseline object angularly resolved
- Closure phase CP / T3PHI
 - At least 3T beam combiner needed
 - Deviations from point symmetry when deviating from 0 degrees
- Differential Phase DPHI
 - High spectral resolution needed VEGA, SPICA, AMBER, MATISSE, GRAVITY
 - The phase within a spectral line normalized to the surrounding continuum e.g. a star that appears as a point source in the continuum, but the line emission from its circumstellar environment is resolved
- Differential visibility
 - Similar to DPHI but for visibility

Resources

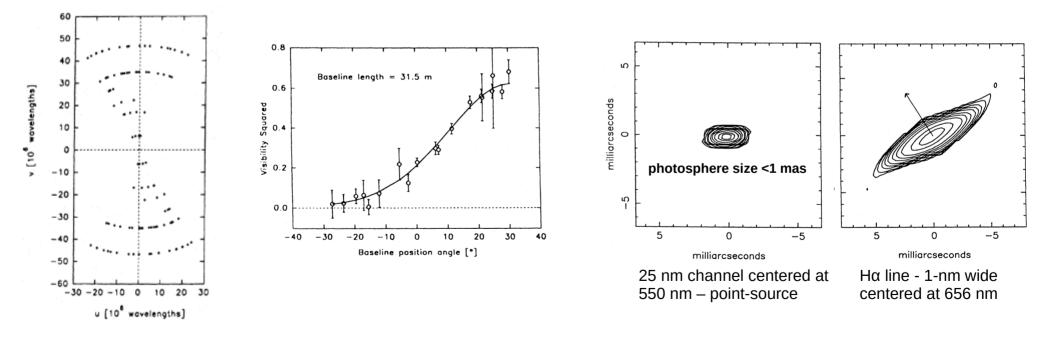

- VLTI schools materials now available for the 2024 school at https://vltischool2024.sciencesconf.org/
- ESO/CHARA website, instrument manuals, reduction pipeline cookbooks, ...
- VLTI Expertise centers, ESO Helpdesk

Science cases

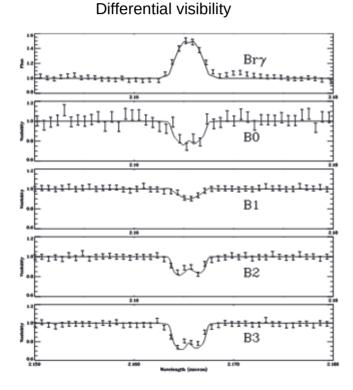
- Measurement of stellar diameters *UD* > 0.2 mas
- Mapping of astrometric orbits of multiple star systems *orbit sizes from ~1 to ~50 mas*
- Imaging of surfaces of stars with large angular diameters *UD* > 2 mas
- Circumstellar environments Be stars, YSOs, evolved stars, ... *spectro-interferometry*
- Resolving Active Galactic Nuclei, inner parts of YSOs pushing the boundaries, GRAVITY+

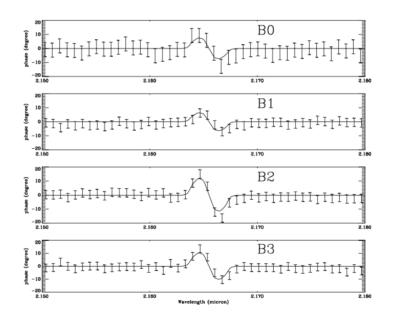

Classical Be stars

Ideal targets for optical interferometry


- Disk size and shape from visibility measurements
- Disk asymmetries and companion detection from closure phases
- Disk kinematics and extent from differential visibilities and phases across emission lines (Hα and Brγ)

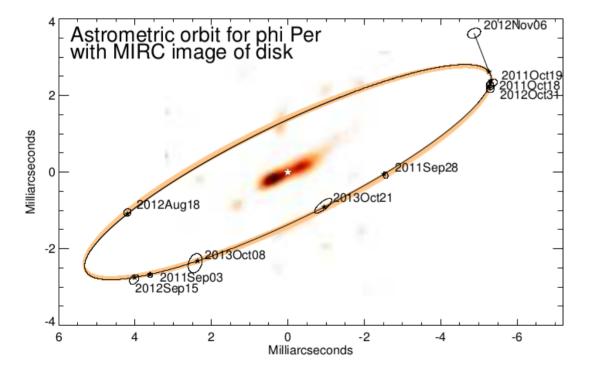
- Rapidly rotating and non-radially pulsating mainsequence B-type stars with ionized, gaseous decretion disks in Keplerian rotation
- Many Be stars are post-mass-transfer binaries with faint, stripped companions


Be star interferometric milestones


• **ζ Tau disk imaged by MkIII Optical Interferometer** (Quirrenbach+ 1994)

Be star interferometric milestones

• Keplerian rotation of α Ara disk from VLTI/AMBER spectro-interferometry (Meilland+ 2007)



Differential phase

Evidence for Keplerian rotation in 'S-shaped' profile

Be star interferometric milestones

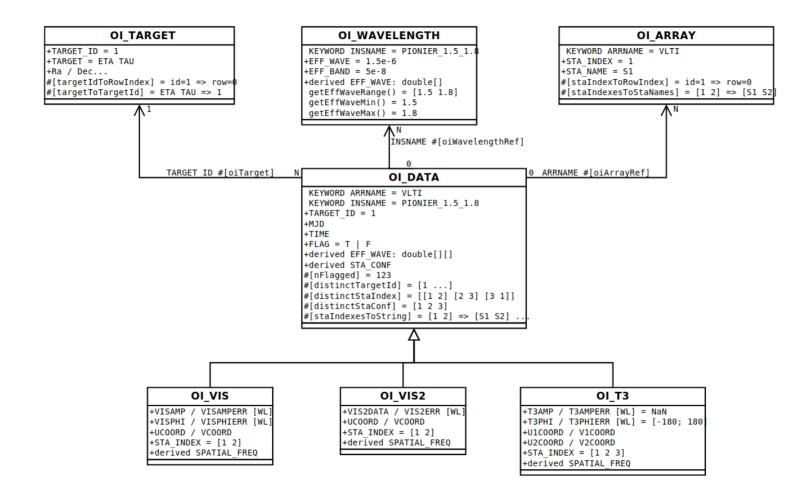
• First detection of a stripped companion orbiting a Be star with CHARA/MIRC (Mourard+ 2015)

Table 6. Position of the companion as a function of the RJD as detected in the various MIRC data sets.

RJD	Phase	Separation	PA	$\sigma_{ m major}$	$\sigma_{ m minor}$	$PA(\sigma)$
55 807.91	0.62	4.50	126.7	0.07	0.06	84
55 832.86	0.81	2.56	268.2	0.09	0.06	18
55 852.87	0.97	5.75	293.1	0.11	0.10	12
55 853.76	0.98	5.83	293.5	0.14	0.10	298
56158.02	0.38	4.34	104.0	0.10	0.09	330
56185.81	0.60	4.90	124.8	0.14	0.10	318
56231.77	0.96	5.73	292.3	0.10	0.10	291
56237.61	0.01	6.08	306.6	0.18	0.12	292
56 573.86	0.66	3.39	134.4	0.26	0.17	340
56 586.76	0.76	1.27	226.6	0.28	0.10	309

Parameter	Value
$T_{\rm RV \ min}$ (RJD)	56110.03 ± 0.08
<i>P</i> (d)	126.6982 (fixed)
a (mas)	5.89 ± 0.02
е	0 (fixed)
<i>i</i> (°)	77.6 ± 0.3
$\omega(^{\circ})$	0 (fixed)
$\Omega(^{\circ})$	-64.3 ± 0.3
$\gamma (\mathrm{km}\mathrm{s}^{-1})$	-2.2 ± 0.5
$K_a ({\rm km}{\rm s}^{-1})$	10.2 ± 1.0
$K_b ({\rm km}{\rm s}^{-1})$	81.5 ± 0.7
$M_{a+b} (M_{\odot})$	10.8 ± 0.5
$M_a~(M_\odot)$	9.6 ± 0.3
$M_b~(M_\odot)$	1.2 ± 0.2
d(pc)	186 ± 3

Working with interferometric data – OIFITS format


- Interferometric data come in standardized OIFITS format *.oifits (https://arxiv.org/pdf/1510.04556)
 - Can be manipulated with standard software tools such as Python/Astropy *fitsheader*, *fitsinfo*, *fitscheck*, *fitsdiff*
 - ESO qfits library dfits and fitsort

$\mathrm{HDU^{1}}$	Intent	Multiplicity
(Header)	(Mostly empty)	
OLTARGET	"Objects" positions (and effective cross-index)	1
OI_ARRAY	Geometry of telescope positions, aperture size	0N
OI_WAVELENGTH	Observing wavelengths (and instrument identification tag)	1N
OL-VIS2	V^2 observables (baselines)	0N
OLT3	phase closures (triplets of baselines)	0N
OI_VIS	Differential Phases etc	0N

Table 1. OIFITS version 1 tables and their main use.

1: Header Data Unit, the highest level component of the FITS file structure (binary tables for OIFITS)

Working with interferometric data – OIFITS format

JMMC tools

- Interoperable Java tools
- Aspro2 Planning observations, checking observability, *uv* coverage
- **GetStar** Get star info such as size estimates based on spectro-photometry and distance
- SearchCal search the database of interferometric calibrators for your science target
 - Need to calibrate system visibility (response to a point source / source of a known size) this is a function of seeing, zenith angle, time, ...
- **OiDB** Optical interferometry Data Base including reduced, calibrated and published data (Haubois+ 2014)
- **OIFits explorer** Plot data from OIFITS files
- LITPro geometrical model fitting of interferometric data, for this we will use **PMOIRED** instead
- Oimaging model-independent imaging of data with good *uv* coverage