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( Element name ) (Rela(ive atomic mass) ( Block ]

" Al

ALUMINUM
26.982

1
SODIUM
22,990

MAGNESIUM
24.305

PHOSPHORUS
30.974

23

V

VANADIUM
50.942

41N b

NIOBIUM
92.906

Ta

TANTALUM
180.948

28

N1
NICKEL
58.693

46Pd

PALLADIUM
106.421

78 |
PLATINUM
195.084

Kr

KRYPTON
83.798

Br

BROMINE
79.904

Se

SELENIUM
78.971

As

ARSENIC
74.922

Ge

GERMANIUM
72.640

Ga

GALLUM
69.723

Zn

ZINC
65.382

48C d

CADMIUM

Cu

COPPER
63.546

47Ag

SILVER
107.868

Co

COBALT
58.933

"Rh

RHODIUM
102.906

Ir

IRIDIUM
192.217

Mn

MANGANESE
54.938

Cr

CHROMIUM

22
T1
TITANIUM
47.867

ZY

ZIRCONIUM
91.224

72Hf

HAFNIUM
178.492

Sc

SCANDIUM
44.956

Ca

CALCIUM
40.078

“Sr

STRONTIUM
87.620

Ba

BARIUM
137.328

POTASSIUM
39.098

Rb

RUBIDIUM
85.468

Cs

CAESIUM
132.905

Xe

XENON
131.294

Rn

RADON
(222.018)

Te

TELLURIUM
127.603

Po

POLONIUM
(208.982)

"Sb

ANTIMONY
121760

Bi

BISMUTH
208.980

50
TN
118.711

“Pb

LEAD
207.210

In

INDIUM
114.818

81 T'l

THALLIUM
204.383

Ru

RUTHENIUM
101.072

Os

OSMIUM
190.233

Tc

TECHNETIUM
(97.907)

Re

RHENIUM
186.207

YTTRIUM
88.906

MOLYBDENUM
95.951

10DINE
126.904

85 At

ASTATINE
(209.987)

TUNGSTEN
183.841

105

D 107 D 0]

108 109 110

& us 0O 5] B

Fr

FRANCIUM
(223.020)

Ra

RADIUM
(226.025)

E89-103

104R f

RUTHERFORDIUM
(261.109)

Db

DUBNIUM

(262.114)

Sg

SEABORGIUM
(266.122)

Bh

BOHRIUM
(264.120)

Hs

HASSIUM

(277.000)

Mt

MEITNERIUM

(268.139)

Ds

DARMSTADTIUM

(281.000)

ROENTGENIUM

(280.000)

COPERNICIUM
(285.000)

(286.000)

114 F'l

FLEROVIUM
(289.000)

Mc

MOSCOVIUM
(289.000)

Lv

LIVERMORIUM
(293.000)

Ts

TENNESSINE
(294.000)

OGANESSON
(294.000)

La

LANTHANIUM
138.905

Ce

CERIUM
140.116

59 i
PRASEODYMIUM
140.908

' soNd

NEODYMIUM
144.242

61 i
PROMETHIUM
(144.000)

62 .
SAMARIUM
150.362

Fu ,,

EUROPIUM

643]5 )

157.253
e

' esTb ‘

TERBIUM
158.925

SGDY

DYSPROSIUM
162.500

Ho

HOLMIUM
164.930

Er

ERBIUM
167.259

Tm

THULIUM
168.934

70Yllb

YTTERBIUM
173.054

Lu

LUTECIUM
174.967

Ac

ACTINIUM
(227.028)

o

THORIUM

(232.038)
I

91 :
PROTACTINIUM
(231.036)

URANIUM
(238.029)

1§93

Np

NEPTUNIUM

(237.048)
N—

Pu

PLUTONIUM

(244.064)
—

AMERICIUM

(243.061)

Cm

CURIUM

(247.070)
o———

97Bk L

BERKELIUM
(247.070)

e

CALIFORNIUM

(251.080)
I

Es

EINSTEINIUM
(252.083)

100

Fm

FERMIUM
(257.095)

101

Md

MENDELEVIUM
(258.098)

102

No

NOBELIUM

(259.101)

Ly

LAWRENCIUM
(262.110)

© Andy Brunning/Compound Interest 2017 - www.compoundchem.com | Facebook: facebook.com/compoundchem | Twitter: @compoundchem
This graphic is shared under a Creative Commons 4.0 Attribution-NoDerivatives-NonCommercial licence.

Ci

SO0




EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Copper Mercury

7 Uranium
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Sir William Huggins
(7 February 1824 — 12 May 1910)

XIIl. On the spectra of some of the nebulee.
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XIIl. On the spectra of some of the nebulee.

Sir William Huggins
(7 February 1824 — 12 May 1910)
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HIFI Spectrum of Water and © ESA, HEXOS and the HIFI consortium
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Sir William Huggins is also responsible for
Discovering the following element.
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——
—f

Sir William Huggins is also responsible for
Discovering the following element.

Nebulium
Z~ yun (cloud) + = qi (gas)
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Nebulium

IT would be a convenience if a name were chosen for the as yet
undiscovered gas, which is suggested by the typical bright nebular
lines, as a principal constituent of the nebule. Sir William Huggins
has used occasionally the term nebulum. "y\f,rpoareT L. HUGGINS. '

Cat’s Eye Nebula

Wide Field Camera on the Isaac Newton Telescope
D. Lopez and R. Barrena (IAC)
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Nebulium

IT would be a convenience if a name were chosen for the as yet
undiscovered gas, which is suggested by the typical bright nebular
lines, as a principal constituent of the nebule. Sir William Huggins
has used occasionally the term nebulum. "y\f,rpoareT L. HUGGINS. '

What was known of elements at this time?

Cat’s Eye Nebula

Wide Field Camera on the Isaac Newton Telescope
D. Lopez and R. Barrena (IAC)
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Periodic table at Dmitri Mendeleev’s time

ONNTD CHCTEMb B3J1EMEHTOB'.

1 8 7 O OCHOBAHMOR HA HXS ATOMKOMD BSCH H XHMUYECKOMS CXOACTES.

Ti=S50 Zr= 90 ?7=180.
V=51 Nb= 94 Ta=181.
Cre=52 Mo= 96 Wa=186.
Mn=55 Rh=1044 Pt=197,.
Fe=56 Rn=1044 [r=198.
- v 2 T Ni=Go=59 Pi=106s O-=189.
Ay V. oa AN H=1 Cu=634 Ag=—108 Hg=200.
IS T Y 0 e g Be= 0aMg=24 Zn=652 Cd=112

B=11 Al=27s ?=68 Ur=l16 Au=197?

C=12 Si=28 ?=70 Sn==|18

N=14 Pm=31 As=75 Sb=122 Bi=210?

O=16 S=32 Sem794 Te=128?

F=19 Cl=356Br=80 (=127
Li=7 Na=23 K=39 Rb=854 Cs=133 Tlm=204.

Ca=40 Sr=87s Ba=1{37 Pb=207.
7m45 Cem=92

Mr=56 La=94
Wi=ab0 Di=95
Nn~T156Th=118?
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Periodic table at Dmitri Mendeleev’s time

T x -
B SO AT

THE PERIODIC TABLE OF ELEMENTS

1 2 N
H Symbol Key Groups of elements H e

HYDROGEN -
1,008 Atomic number Element symbol

B |
|L1 ‘Be

ONNTD CHCTEMH 9J1EMEHTOB.

OCHOBAHMOR HA HYS ATOMROMD BSCH H XEMUNECKOMD CXOACTES.

Ti=S0 Zr= 90 7180
- s block elements 4003 v nsl Nb- 94 T" lsz.

- p block elements ? Bf- A > O

B C N F Ne Cre=52 Mo= 96 W =186.

D d block elements BORON CARBON NITROGEN FLUORINE NEON
10.811

1 B ] L D f block elements T = Rm: m — A N . = — D Hl‘i et 55 Rh- l“" pt-ﬂ 197,‘-
Na |[ Mg AL|l'Si || P || S || CL|I Ar Fe=56 Ron=1044 Ir=2198.

= L= 23 ] <l N Senkl| BEN) I o Ni=Co=59 Pl=106s O-=199.
C Ge || As || Se || Br || Kr H=1 Cum634 Ag=108 Hg =200.

Colour Key

21 22 24 25 26 27 29 31
S Ti || V || Cr |Mn|| Fe || C Ni || C G
CALCIUM SCANDIUM TITANIUM VANADIUM CHROMIUM MANGANESE IRON COBALT NICKEL COPPER GALLIUM GERMANIUM ARSENIC SELENIUM BROMINE KRYPTON

40078 | @ 44 .956 47.867 50.942 51.996 54.938 55.845 58.933 X 63.546 £ 69.723 72.640 74.922 78.971 79.904 83.798 & 9 M u l 65 m l l 2

38 I TE [« 41 42 43 44 45 |E 47 = 49 B (s DY B R (2 0l EE R (- R
Sr|| Y| Zr || Nb||Mo|| Tc || Ru|| Rh || Pd || Ag In || Sn || Sb || Te I Xe B=t1 Al=27t 2m68 Ur=ii6 Au=197?
85.468 87.620 88.906 91.224 92.906 95.951 (97.907) 101.072 102.906 106.421 107.868 112.414 114.818 118.711 121.760 127.603 126.904 131.294 c = '2 Si - 28 ?= 70 sn a 1 ls

55 | T [ | 72 73 75 76 77 78 79 80 81 B [z & [ B [ & f= B fss B
Cs |[ Ba Hf |[Ta |['W [ Re|[Os || 1r || Pt |['Au[ Ho[ T \lzp \i Po |[ At || Rn N=14 P=31 As=75 Sb=i22 Bi=210?
e = 0=16 $S=32 Sem=m79,4 Te=128?
Fl || Mc|| Lv || Ts || Og F=19 Cl=35¢Br=80 (=127
Li=7 Na=23 K=39 Rb=854 Cs=133 Tim=204,

Ca=40 Sr=87¢ Ba=1{37 Pb=207.
58 59 60 61 62 63 64 65 67 68 69 70 71 ? = ‘ 5 Ce - 92
Ce || Pr||Nd||Pm|[Sm]|| Eu||'Gd|[ To || Dy || Ho || Er ‘Tm Yb ||'Lu =56 La=94

90 93 96 103 ?Y| e 60 Di = 95
Ac || Th||Pal||l U || Np|| Pu Cm||Bk || Cf || Es [|Fm||Md|| No || Lr

Fr

"Ra | ,.0;| RE|Db || Sg || Bn || Hs || Mt || Ds || Rg || Cn || Nh

FRANCIUM RADIUM RUTHERFORDIUM DUBNIUM SEABORGIUM BOHRIUM HASSIUM MEITNERIUM DARMSTADTIUM ROENTGENIUM COPERNICIUM NIHONIUM
(223.020) (226.025) . (262.114) (266.122) (264.120) (277.000) (268.139) (281.000) (280.000) (285.000)

105 L] 107 108 109 110 11 L] f12 ) I

140.116 4 144.242 (144.000) . . 157.253
ACTINIUM THORIUM PROTACTINUM URANIUM NEPTUNIUM PLUTONIUM AMERICIUM CURIUM BERKELIUM CALIFORNIUM EINSTEINIUM FERMIUM MENDELEVIUM NOBELUM LAWRENCIUM - ln L 15" l h B ‘ IS?

(227.028) (232.038) (231.036) (238.029) (237.048) (244.064) (243.061) (247.070) (247.070) (251.080) (252.083) (257.095) (258.098) (259.101) (262.110)
e e
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Nature,
v. 120, p. 473 (1927)

TABLE I.

A, Source. Series Designation,
73250 On 2D 2p
6583-6 Nu 3Py-1D
6548-1 Nn SP,-'D
5006-84 Om 3P, D
4958-91 O SP,-1D
4363-21 Omnr 1D 18
3728-91 On 1S 2D,
3726-16 On S 2D,

namely, 1D-18 of O and 2D-2P of Oyp. The calcu-
lated frequencies, if wunresolved, are 22916 and
13646,which correspond to wave-lengths of 4362-54 A. U,
and 7326-2 A.U. respectively. Two of the strongest
nebu are found at 4363-21 A.U.and 7325 A.U.
These deviations are well within the rather large
experimental errors arising from the fact that the
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Ira Sprague Bowen Nature,
3 v. 120, p. 473 (1927)

TAaBLE I.

A, Source. Series Designation,
73250 On 2D .2p
6583-6 Nu 3Py-1D
6548-1 Nn SP,-'D
5006-84 Om 3P, D
4958-91 O SP,-1D
4363-21 Omnr 1D 18
3728-91 On 1S 2D,
3726-16 On S 2D,

namely, 1D-18 of O and 2D-2P of Oy, The calcu-
lated {frequencies, if wunresolved, are 22916 and
13646,which correspond to wave-lengths of 4362-54 A. U,
and 7326-2 A.U. respectively. Two of the strongest
nebulium are found at 4363-21 A.U.and 7325 A.U.
These deviations are well within the rather large
experimental errors arising from the fact that the
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Ira Sprague Bowen Nature,

namely, 1D-18 of O and 2D-2P of Oyp. The calcu-
lated {frequencies, if wunresolved, are 22916 and
13646,which correspond to wave-lengths of 4362-54 A. U,
and 7326-2 A.U. respectively. Two of the strongest
nebulium are found at 4363-21 A.U.and 7325 A.U.
These deviations are well within the rather large
experimental errors arising from the fact that the

v. 120, p. 473 (1927)

hydrogen alpha (H-alpha)
doubly ionised oxygen (Olll)
lonised sulfur (Sll)

TAaBLE I.

A, Source. Series Designation,
73250 On 2D 2P
6583-6 Nu 3Py-1D
6548-1 Nn SP,-'D
5006-84 Om 3P, D
4958-91 O SP,-1D
4363-21 Omnr 1D 18
3728-91 On 1S 2D,
3726-16 On S 2D,

6.50 -
6.00
5.50 -
5.00-
4.50
4.00-
3.50
3.00-
2.50 -
2.00+
1.50
1.00+
0.50

0.00-

H-y H-p Ol He | H-a Cat’s Eye Nebula

T T T T T T T T
4500 S000 SS00 6000 6500 7000 7500 8000 8500

Angstroms https://www.astrobin.com/s79n6g/0/
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But where does this oxygen come from?

10
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Astrophysical sites where nucleosynthesis occurs

Meixner+21

VOLVED
'STARS

STAR-
FORMING
GAS

STAR
FORMATION

11
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Astrophysical sites where nucleosynthesis occurs
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Astrophysical sites where nucleosynthesis occurs

Meixner+21

Big Bang
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Astrophysical sites where nucleosynthesis occurs
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How are elements produced
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Chemical abundances in the Sun

With data from: Asplund et al. (2009)

I 12H —e— meteoritic
* Relevant notations: — -
< 10 —o— photospheric
e dexislogey, = log (NX/NH) 12 3 Ce
e Where H is defined as: loge;; = 12 v 8-
e | ater, abundance notation: % 6 -
O
o |X/H| =log,o(X/H). —log,g(X/H), £ Neutron capture elements
4 -
* Neutron-capture elements are among the '%
least abundant elements in nature o - % o
O
e ~6 dex lower than Oxygen, ~10 dex — ' WMW
lower than H 0 - .
40 60 80

0 2IO
Atomic Number
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Why astrophysical metals (Z) are

all elements but H and He?

Cosmic Gas Abundances as measured by the CHANDRA X-ray Observatory

(Credit: NASA/CXC/M.Weiss)

H - Hydrogen: 7,500 e GCE studies the production of elements and

He - Helium: 2,300 isotopes over the lifetime of a galaxy.

O - Oxygen: 100

C - Carbon: 50 e Questions we want to answer:

Ne - Neon: 13

Fe - Iron: 1 e What history may have lead to present-day
N - Nitrogen: 10 observed abundances?

Si - Silicon: 7
Mg - Magnesium: 6 e How do these abundances change with
S - Sulfur: 5 environment?

Ar - Argon: 2
Ca - Calcium: 0.7 \
Ni - Nickel: 0.6

Al - Aluminium: 0.5 MetaIIICIty (Z), On|y 2% of the ISM

Na - Sodium: 0.2
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1

H H Symbol Key Groups of elements H e He
o 5 - s block elements oo
L1

1 —

e - D DLO KL ITICer
B e HYDROGEN g : B C N O F Ne
LITHIUM BERYLLIUM 1.008 l—o' d blOCk e'lement S BORON CARBON NITROGEN OXYGEN FLUORINE NEON
6.941 9.012 U - 10.811 12.011 14.007 18.998 20.180
1 N - 12M - ( Element name] (Relative atomic mass) ( Block ] - f bloc k elements 13 Al - 14 S - 15 17 C l - 18 A
SODIUM MAGNESIUM ALUMINIUM SILICON PHOSPHORUS CHLORINE ARGON
22.990 24.305 26.982 28.086 30.974 35.453 39.948

19 - TES TR (=2 23 29 B | B R (= R Dl E 0 BB R 6
K ||]Caf]Sc || Ti || V Cu Ga || Ge || As || Se || Br || Kr
PUTASSIUM CALCIUM SCANDIUM TITANIUM VANADION CHROMIUM MANGANESE COPPER GALLIM GERMANIUN ARSENIC SELENUM BROMINE KRYPTON
35.098 40.078 44,956 47.867 50.942 54,938 63.546 69.723 72.640 74922 78.971 79.904 83.798

37 I TES ) [20 ) [+1 : D+ f ) 4 DT E Y E R (52 54
od || A I S Sb || T X
Rb || Sr Zr || Nb g n n e e
RUBIDIUM STRONTIUM YTTRIUN ZIRCONIUM NIOBIUM MOLYBDENUM TECHNETIUM RUTHENIUM PALLADIUM SIVER CADMIUM INDIUM ™ ANTIMONY TELLURIUM XENON
85.468 87.620 91.224 92.906 95.951 (97.907) 101.072 106.421 107.868 112.414 114.818 118.711 121.760 127.603 131.294
55 | VBB [ 72 73 (7 0O 17 ) fa1 B fs2 Y EE R (s B fs5 R fss
Cs || Ba Hf || Ta Re Pt TL || Pb || Bi || Po || At || Rn
CAESIUM BARIUM E 57—71 HAFNIUM TANTALUM TUNGSTEN RHENIUM OSMIUM IRIDIUM PLATINUM 6OLD MERCURY THALLIUM LEAD BISMUTH POLONIUM ASTATINE RADON

132.905 137.328 178.492 180.948 183.841 186.207 190.23 192.217 195.084 196.967 200.592 204.383 207.210 208.980 (208.982) (209.987) (222.018)

87 | TEE R 104 T) 105 i S ) f207 B iz s B (12 B (s B fi6 R (i B fus
FRANCIUM RADIUN E89-103 |\ wonoun DUBNIUM SEABORGIUM BOHRIUN ROENTGENIUN COPERNICIUM NIKONIUM FLEROVIUM MOSCOVIUN LIVERMORIUM TENNESSINE OGANESSON
(223.020) (226.025) (261.109) (262.114) (266.122) (264.120) (280.000) (285.000) (286.000) (289.000) (289.000) (293.000) (294.000) (294.000)

O fes 0O 0O

Sm||Eullcd || T || Dy || Ho

SAMARIUM EUROPIUM GADOLINIUM TERBIUM DYSPROSIUM HOLMIUM
150.362 151.964 157.253 158.925 162.500 164.930

89 D M0 o1 D f=2 R 95 Y EB nY Ez nY EE Y E D fio0 O fio1 O [z O [0z i
Ac || Th|| Pa|l U || Np Am||Cm]|| Bk || Cf || Es || Fm || Md || No || Lr

ACTINIUM THORIUM PROTACTINIUM URANIUM NEPTUNIUM PLUTONIUM AMERICIUM CURIUM BERKELIUM CALIFORNIUM EINSTEINIUM FERMIUM MENDELEVIUM NOBELIUM LAWRENCIUM
(227.028) (232.038) (231.036) (238.029) (237.048) (244.064) (243.061) (247.070) (247.070) (251.080) (252.083) (257.095) (258.098) (259.101) (262.110)

57La SBCe SQPr GoNd-

PROMETHIUM
(144.000)

LANTHANIUM CERIUM PRASEODYMIUM NEODYMIUM
138.905 140.116 140.908 144.242

68 0 s 0 (7 Df: f
ERBIUM THULIUM YTTERBIUM LUTECIUM
167.259 168.934 173.054 174.967

© Andy Brunning/Compound Interest 2017 - www.compoundchem.com | Facebook: facebook.com/compoundchem | Twitter: @compoundchem @@@@
This graphic is shared under a Creative Commons 4.0 Attribution-NoDerivatives-NonCommercial licence. e e
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Missing in B2FH: Galactic Chemical Evolution (GCE)

In short, GCE is the field that integrates YIELDS from nucleosynthesis sites
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over the evolutionary history of galaxies.
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Missing in B2FH: Galactic Chemical Evolution (GCE)

In short, GCE is the field that integrates YIELDS from nucleosynthesis sites

over the evolutionary history of galaxies.
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Missing in B2FH: Galactic Chemical Evolution (GCE)

In short, GCE is the field that integrates YIELDS from nucleosynthesis sites

over the evolutionary history of galaxies.
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How does GCE reconstruct stellar populations?
We need to know which stars form at which times.

total stellar mass SFR and IMF distribution of
runitame arecrucial - TREREES
dM., dN;
dt in reconstructing the dm
Birthrate function 98

PB(m,t) = SFR(r) X IMF(m)
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The other core ingredient: Star formation in galaxies
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birthrate: SFR(t) x IMF(m) GalCEM
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Stellar lifetimes of single stellar populations

o 0 0 O QOO

Let’s consider stars
born In a single stellar population

30
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Stellar lifetimes of single stellar populations

Let’s consider stars o 0 0 O OO
born In a single stellar population ‘ ‘

+1
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Initial mass functlorx
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Stellar mass
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stars stars

IMF




EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Stellar lifetimes of single stellar populations Stellar mass
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Stellar lifetimes of single stellar populations Stellar mass
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How do stars contribute to GCE?
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How do stars contribute to GCE?

Through yields:
vields are star ejecta, In solar masses, broken down by Isotope
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birthrate: SFR(¢) x IMF(m) GalCEM
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birthrate: SFR(t) x IMF(m) GalCEM
deathrate: SFR(t — 7(m)) x IMF(m)
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birthrate: SFR(t) x IMF(m) GalCEM
deathrate: SFR(f — 7(m)) x IMF(m)
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Can we truly separate SFR and IMF?

B(m,t) = SFR(¢) x IMF(m)
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B(m,t) = SFR(¢) x IMF(m)

(Spoiler alert: no)




Can we truly separate SFR and IMF?

B(m,t) = SFR(¢) x IMF(m)

(Spoiler alert: no)

LLet us have a closer look at how stars form
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Thermonuclear processes...

Binding energy per nucleon (MeV)
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Thermonuclear Fusion

pa ‘China switched on its nuclear fusion

' .‘.r..}'.‘, ‘:I'fi._'v‘“.".l;a | i ,‘ RMES a A V : )
A R o T

A D S i al @
Satlelo | o] ol ooty
==

s d@vice that's 5 times hotter than the
Sun (core)

ol - —
L ol| PP
ot | 7]

Chris Bolan, CC license

It's time to wake up and smell the plasma, as thermonuclear fusion energy inches closer
and closer to reality.

In its quest to develop unlimited green energy, the EAST Fusion Facility in Heifeig Chi_na

recently created a plasma gas that was heated to 120° million Celsius—that’s three-times

hotter than the sun—and kept it there for 101 seconds before it dissi’pated, setting a new
world record both for heat and duration.

H | H — He “The breakthrough is significant progress, and the ultimate goal should be keeping the

temperature at a stable level for a long time,” Li Mao, director of physics at Southern
University of Sci-Tech in Shenzhen.
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How are heavy elements different from lighter ones?

Elements up until the iron-
nickel peak

(A ~ 56, Z ~ 26) may form
via thermonuclear reactions

Beyond, an increasing
Coulomb barrier
prevents nuclides from
undergoing fusion

Credit: Ashby+18
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How are heavy elements different from lighter ones?
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Other mechanisms are at work.
Mainly:

NEUTRON CAPTURE

The capture of neutrons onto nuclides
IN neutron-rich environments
(s-process and r-process)

(Omitted from this talk are p-
processes, I-processes, and vp-
processes)

Credit: Ashby+18 46
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Since when did we start learning
where elements come from?

G. Gamow, R. Alpher, R. Herman

Hot Big Bang

all elements created by

neutron capture in the Early Universe

B. Lindblad &J. H. Oort

discover Galactic Rotation
Supernova 1987A

S. van den Bergh identifies confirms stellar
The Great Debate the G-dwarf problem nucleosynthesis

1870 1880 1890 1900 1910 1920 1930 1940 1950 °* ° 1960 1980 1990 *2000° 2010 2020 :
Mendeleev's C. Payne &H. N. Russell notes the Salpeter IMF Talbot & Arnett Radial-dependent
Periodic Table predominance of H Numerical one-zone GCE
published in the solar atmosphere GCE solution
WMAP confirms
H. Bethe & C. von Weizsacker abundances of
CNO cycle light elements
F. Hoyle Belokurov+, Myeong+, Shipp+
element synthesis in SNe Gaia Sausage
& other streams

Burbidge Fowler Hoyle (B2FH)
first complete nucleosynthesis
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“B2FH": the seminal paper

REVIEWS OF
MODERN PHYSICS

VoruME 29, NUMBER 4 OcroBER, 1957

Synthesis of the Elements in Stars*®

E. MARGARET BURBIDGE, G. R. BURBIDGE, WiLLi1AM A. FOwWLER, AND F. HOYLE

Kellogg Radiation' Laboratory, California Institute of Technology, and
Mount Wilson and Palomar Observatories, Carnegie Institution of Washingion,
California Institute of Technology, Pasadena, California

“It is the stars, The stars above us, govern our conditions’’;
(King Lear, Act IV, Scene 3)
but perhaps

“The fault, dear Brutus, is not in our stars, But in ourselves,”
(Julius Caesar, Act 1, Scene 2)
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The Hertzsprung—Russell diagram
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The Hertzsprung—Russell diagram
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The Hertzsprung—Russell diagram
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Dominant stellar
nucleosynthesis routes
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Qniemiec on Wiki commons


https://commons.wikimedia.org/wiki/User:Qniemiec
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Credit: Penn State Astronomy & Astrophysics
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Credit: Penn State Astronomy & Astrophysics
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Credit: Penn State Astronomy & Astrophysics
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The Kippenhahn diagram (Kippenhahn, Weigert, Weiss, 2012)
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Mass loss for massive stars
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solid line) at core H exhaustion as a function of the initial
mass, for non rotating solar metallicity models. The label
'"WNL’ marks the models entering the Wolf-Rayet stage.
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Fred Hoyle

Fred Hoyle: Basically speaking a star 1s a pretty simple structure.
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Fred Hoyle
"

Fred Hoyle: Basically speaking a star 1s a pretty simple structure.

R. O. Redman: Fred, you’d look pretty simple at a distance of 10 parsecs!
Overheard at Cambridge Observatory Club ¢. 1954.

s Roderick Oliver Redman
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Meanwhile, lower mass stars...

A Credit: Penn State Astronomy & Astrophysics
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Evolution on the Thermal-Pulsing
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Evolution on the Thermal-Pulsing
Asymptotic Giant Branch
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Surprisingly, these low-to-intermediate mass stars produce about half of the present-day heavy (relative to iron) elements
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Neutron-capture elements
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Neutron-capture elements
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Neutron-capture elements
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19-34_. -3 N
n, > 10 cm 7, 3>t~ 1s \
Pagel, 2009, Chapter 6 . Decay
( g p ) ;:11 X o ;;1 A

https://www.bnc.hu | radiation
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Neutron-capture elements

¢ B-particle
 Most heavy (A > 56) elements are produced by neuﬁ o o
neutron capture g @
e Slow pr -Pr Neutron /\ 7 / Radioactive
Slo process (S P OCGSSGS) capture \‘:ﬂ// - decay
—13 -3 - 0 Taroet Compound \\\
n,~ 10°7“cm™, 1, <1, ~ 1075 (100-1000 years) e - \
' 4 L e
® Rapld Process (r-processes ) ZX ZX gamma ZX
1024 L radiation
n, > 10 cm 7, 3>t~ 1s
(Pagel, 2009, Chapter 6) o e
. o
https://www.bnc.hu radiation

AGB winds

B8
ol "s‘,).t:'

7
@
7,
7
@
Q
O
—
Q.
-

Rosswog+13
IRAS 15445-5449 | Calabash nebula .

S-processes
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Neutron-capture elements

(Credit: EMMI, GSI/Different Arts)

e Relative to the B-decay, ~ /2 of the elements are produced

slowly (s-process), the other %2 rapidly (r-process) Bia‘#gn
* s-processes result from successive thermal pulses of AGB N
stars (e.g., Cristallo+15) & massive stars (e.g., Limongi & 5 oo “
Chieffi, 2018) 2 ) ?
: : : : e s-process .
* r-processes sites are still uncertain, but candidates 2
include: E 2 ; 126
 NS-NS coalescence (verified! Watson+19) r-process
e MHDJs? (Winteler+12) N | "
e Neutrino-driven winds? (mainly SNe, Shibagaki+16) ol il
N /. L Number of neutrons N
218 =l e ——————

AGB winds

B8
ol "s‘,).t:'

r-processes

Rosswog+13
IRAS 15445-5449 | Calabash nebula .

S-processes
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A nuclear physicist’s (isotopic) periodic table

i

N
w
o
§ 2 0=} . ) 184
2 |
C S-process )
3
=
= 508“ 126

r-process

28Ni 2t e
ZOCa
50
D=
Number of neutrons N
e B

(Credit: EMMI, GSI/Different Arts)
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A nuclear physicist’s (isotopic) periodic table

i
N
(7))
o
§ 82Pb = . ) 184
2 |
C S-process )
3
=
= 508“ 126
r-process Beta decay
28Ni 2t e
20Ca
50
D=
Number of neutrons N

(Credit: EMMI, GSI/Different Arts)

61



EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

S-process

62 s-processes in AGB stars (Cristallo+11, +15)



https://www.youtube.com/watch?v=BaUjNiJYgO4
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S-process

62 s-processes in AGB stars (Cristallo+11, +15)



https://www.youtube.com/watch?v=BaUjNiJYgO4
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r-process in the jet-like explosions of magneto-rotational core-collapse SNe (Nishimura+15


https://youtu.be/MbH7sNQpZ-8

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

63

100

r-process

proton number, Z
N
-

|

| _— lllLllI

10Y
time, s

R—
—_—
-

&

Time = 6.84 x 1071? s

T =9.00x10° K
p =379x10" gem’

| P D |
o W SO S

] ) '
R T )
& o O L

100 150 200 250

A —
1 | 1 1

100
neutron number, N

150

Abundance, logp Y

r-process in the jet-like explosions of magneto-rotational core-collapse SNe (Nishimura+15


https://youtu.be/MbH7sNQpZ-8
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R-process vields (Gjergo+26b)

r-process mass fraction from single NSM event

= NSM dyn asymm TK —
(Shibagaki+16)

NSM dyn symm TK
(Suzuki+18)

NSM jet TK

‘e
Y
N

(Martin+15)

0.03 solar masses is the usual ejected mass

in a coalescence event

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te | Xe Cs Ba La Ce Pr Nd PmSm Eu Gd Tb [5y Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au H'g TI Pb Bi Po
Atomic Number
r-process mass fraction from massive stars

(Shibagaki+16) — MHDJ] TK = Collapsar(Siegel +19)
----- vDW TK -—-- Collapsar No fission
(Nakamura+15)
//\\
Y
// \\\ //|

O..
L
L]

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te | Xe Cs Ba La Ce Pr Nd PmSm Eu Gd Tb ij Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au H'g TI Pb Bi Po
Atomic Number
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e dynamical occur pre-
coalescence:

e driven by tidal forces

® can reach heavy nuclei
like U

* jet ejecta occur post-
coalescence

e \WWeaker, cannot reach
heaviest nuclei
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The yields of s- and r-processes

The magic neutron numbers 82, 126, 184 where 1.50
the yields peak

1.00
* s-processes are closer to the valley of

stability, so Z+N=A will be larger for a given N % 050
e r-processes they have to decay several times 5
before reaching the valley of stability, Z+N=A & 0.00
will be smaller for a given N %
i% —-0.50 ' a1 |
(Credit: EMMI, GSI/Different Arts) j Lo OO ‘Im " ’ ”'
. 3
= —1.50
S Pl -- Toi — —2.00
‘g !
. S-Process .
E —2.50 r-process
= 503“ 126
r-process —3.00
e | 60 80 100 120 140 160 180 200 220
Co__ P MASS NUMBER A

50

Number of neutrons N

He—gdf= » = - 65 Cowan & Thielemann (2004)
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Elemental abundances in individual stars

= | | | | | | | | | | | | =
» \ 4 .— - AN R/ / e :
1 \\(' f"’ , / ‘ N/ ‘VV | , f\ T
i | | D , \
w 0.8 — Fe Yy Fe V
'—ji i C El" Ce ’
[, B = Ce Ce Ce
_ Y Dy Ce Fe I~
.g 0.6 i Ce Gd Ba -
e — Sm _
= — Ce _
S 0.4
s L Co La ]
u Fy _
02 — — HE 1523-0901 — HD122563 Fe _
i | | l | | | | | | | | | | L
4120 4125 4130

Wavelength [A]

Frebel+18: Spectra of two stars of similar temperature and metallicity.

HS122563 is an r-process deficient star. HE 1523-0901 is an r-process-enhanced star.
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What are the candidate r-pro cess sites?

ISM
neutron star merger

."\

(NSM) .
C—/magnetorotational SN
(MHDJ)
Core-collapse
* supernovae
collapsar (CCSN)

67 Farouqi+22
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What are the candidate r-process sites?
Only //’! ISM

confirmed | neutron star merger &~

site (NSM) ta

7 magnetorotational SN

(MHDJ)

Others are
theoretical

r-process
production
sites

*

(And all three

associated Core-collapse
with massive
stars) * supernovae
collapsar (CCSN)

67 Farouqi+22
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APS/Alan Stonebraker, adapted from simulations by NASA/AEI/ZIB/M. Koppitz and L. Rezone

‘ ’ L NSM jet
- o NS or BH

Binary system Coalescence (Merger) —>

Let’s focus on NSM

CREDIT: ESO/L. Calgadav. Musi'c:.Jo.han B..' Monell (wWw.johanm,oneI,I.cdm)
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The r-process enrichment of neutron star mergers

Dynamical

10 1 30.0%, Ngyp=378¢

Secular ejecta

Torus GRS Torus
remnan

0.5%, Nsub=6

MHD, v-wind, § viscous
driven

Mass fraction X
[
o

0 0. 80 120 160 200 240
Mass number A

Dynamical
ejecta

Kulmann (2023, PhD Thesis) 49
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The delayed time distribution for NSM

e The delayed time distribution (DTD, or f(7)) is the distribution across time of NS-NS coalescence
episodes generated from one instantaneous burst of star formation (in unitary mass)

e Equivalent to power law, but motivated by GR 1072 — B=-15
e Itis normalized across cosmic time as: ' — 5= -0.9
T —~ 10!- —— (3= 0.0
Hubble s f o 0.9
J f(T)dT — 1 Lliéj : B= 0.
7, =10Myr ~ 1 OO
e (30 Myr for 9 M, and 4 Myr for 50 M,) E §
o 4 _
= 10
0 if 7<10Myr %’ _
p1 if 10<t <40Myr 10_2—2
f(T) X 0.258—0.75 0.75(8+2.33) 0.75(8+2.33) |
p27 (MIN,S _MDN,I ) 10—3 - I -
=2 —1 0 1
if 40 Myr <t < 13.7 Gyr 10 10 | 10 10
time [Gyr] Gjergo+26b

Simonetti+19, full derivation of p; in Greggio+05
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Variations of the NSM rate

CSFR prescription: Madau & Dickinson (2014)

""""" I L I N A IS
104 E- Normalized to Abbott+21 - = -1.5 = m'_'
— - A= _ . |
T i 0- ) O
3 i — (3= 0.0 )
O 103k — = 0.9 _ O
ol : S,
S 1n2 —
s 1078 R
>3 - - (O
n =
= - -
o] T D e e
10% 2 6 8 10
Z
(IMF integral) min(t,Ty,ppie)
k. =5.97 x 107 is the fraction RNSM(t) — kaaNSMJ
T.

of total star-forming gas mass

ini

-
-
N

-

-

(-
-

= -—0.9

Normalized to Abbott+17

Madau & Dickinson (2014)
Hopkins & Beacom (2006)
Fardal (2007)
Wilken (2008)
MW-like Schmidt-Kennicutt

Y(t — 1)fysp(0)dr

2 4 6 8 10
Z Gjergo+26b

gy = 1.02 X 1077 is the fraction
of NS that will undergo a merger

event at a given instant 7. Taken

which will produce NS

71

to be time-independent
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Other enrichment processes

(2
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Initial conditions
(Primordial gas)

e Most GCE models assume primordial gas as IC

e The red vertical estimate for (2 comes from WMAP

e Circles represent observed abundances (oversimplification +

Lithium problem)

THE PERIODIC TABLE OF ELEMENTS

Symbol Key

Colour Key

Groups of elements

- s block elements

- p block elements
D d block elements
f block elements

E8 9 -103 RUTHERFORDIUM

100 | I | IIIIII] LI B | lllIll T i

O
10-1 P Helium 4 (*He)

10-2 / Deuterium (ZH)

c
D
o)
O
S
T 10
S
o 10%E
=
© . \
@ 105 Helium (3He)
= 5
3 10 =
-
o« -
O D
c 107 2
-
2 O
O

-E' 10-8 <
: 5
.
LL O

10-10

Lithium (7Li)
10‘11 , L1 aanul L1yl 1111
102 101 10"  [10° 108 107

Density of Ordinary Matter (Relative to Photons)

Elamant Abundanoa graphs: Steigman, Encyclopadia of Astronomy
and Astrophysics (Insituta of Physics) Dacamber, 2000

NASAWMAP Sdence Team

WMAP101067 NASA/WMAP

© Andy Brunning/Compound Interest 2017 - www.compoundchem.com | Facebook: facebook.com/compoundchem | Twitter: @compoundchem @@@@
This graphic is shared under a Creative Commons 4.0 Attribution-NoDerivatives-NonCommercial licence. = o s

Steigman (2000)
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Spallation
(Cosmic rays)

e Spallation is the fission caused * j.e., isotopes of boron and
by cosmic rays impinging beryllium

onto heavier nuclides. . .
e Spallation also produces "Li

e Forms isotopes with atomic and some 'Li
mass 2, 10, 11

THE PERIODIC TABLE OF ELEMENTS

Symbol Key Groups of elements

. s block elements

- p block elements

Colour Key

D d block elements

Lﬂ f block elements

28
Ni
NICKEL
58.693

E89-103

¢ Energetic Proton

@ © Andy Brunning/Compound Interest 2017 - www.compoundchem.com | Facebook: facebook.com/compoundchem | Twitter: @compoundchem @@@@ ‘.
This graphic is shared under a Creative Commons 4.0 Attribution-NoDerivatives-NonCommercial licence. 74 re It o La W re n Ce B e r e ey La




HOW MANY GENERATIONS OF STARS DO THE VARIOUS ELEMENTS OF THE SOLAR SYSTEM (SUCH AS OUR BODY) NEED TO GO THROUGH?
Courtesy of Zhiyu Zhang

CCSN: Core Collapse Supernova Explosions - From Massive Stars

RCCSN ~ (30 years) -

Sun-like Star

Massive Star = Reg
(more than 8 to 10 times the ma ur Sun) Superglant

Mgas ~ 1010 Msun

Protostars

toBstar ~ 107  years

Red Giant

M ix ~ 3 x 104 Msun

Rmix ~ Rcesn *tosstar *( Mmix / MgaS)

Neutron Star Supernova
Planetary Nebula R SN o
White Dwartf Black Hole
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HOW MANY GENERATIONS OF STARS DO THE VARIOUS ELEMENTS OF THE SOLAR SYSTEM (SUCH AS OUR BODY) NEED TO GO THROUGH?

Courtesy of Zhiyu
CCSN: Core Collapse Supernova Explosions - From Massive Stars
RCCSN ~ (30 years) -
Mgas ~ 1010  Msun
tOBstar ~ 107 yearS ,, |
" The Sun

M ix ~ 3 x 104 Msun

Rmix ~ Rcesn *tosstar *( Mmix / MgaS)

Assuming the Milky Way evolved for 9 billion years before the Sun: s

tvw=92 Gyr, SO Ncesn ~ Rmix™ tmw ~ 200

It means it took 900 supernova explosions to enrich the sun

- B3 FE—X A i




HOW MANY GENERATIONS OF STARS DO THE VARIOUS ELEMENTS OF THE SOLAR SYSTEM (SUCH AS OUR BODY) NEED T0 GO THROUGH?
Courtesy of Zhiyu

CCSN: Core Collapse Supernova Explosions - From Massive Stars

RCCSN ~ (30 years) -
RHBE

Mgas  ~ 1010 Msun g TN

tOBgtar ~ 1 07 yearS

Mmix ~ 3 x 104 Msun

Rmix ~ Rcesn *tosstar *( Mmix / MgaS)

Assuming the Milky Way evolved for 9 billion years before the Sun:
tvw=92 Gyr, sO Ncesn ~ Rmix™ tmw ~ 200

It means it took 900 supernova explosions to enrich the sun

- B3 FE—X R



HOW MANY GENERATIONS OF STARS DO THE VARIOUS ELEMENTS OF THE SOLAR SYSTEM (SUCH AS OUR BODY) NEED T0 GO THROUGH?
Courtesy of Zhiyu

CCSN: Core Collapse Supernova Explosions - From Massive Stars

RCCSN ~ (30 years) -
RHBE

Mgas  ~ 1010 Msun g TN

tOBgtar ~ 1 07 yearS

Mmix ~ 3 x 104 Msun

Roiy ~ Reesn *tosstar ( Mmix / Mgas) The devil knows what |I've been through

Assuming the Milky Way evolved for 9 billion years before the Sun:
tvw=92 Gyr, sO Ncesn ~ Rmix™ tmw ~ 200

It means it took 900 supernova explosions to enrich the sun

- B3 FE—X R
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7 T~sR0

t -+—-t+-{¢+++++++-+--+—t+—t+—rt+t—+—

(stellar birth) t (stellar death)

n

. = galacticCEM@gmail.com
o—0—0 0
¢ —O—OdD

t t‘ n+1

(Galaxy age) ° o 0 008
SN” eanChment { (stellar birth-time)

—o— OO0
t’ | | | L1l
)

LIMs enrichment § tor SIS~

t(M)=t-t
(stellar lifetime)

=17

GCE
rationale

(M) =t - t’ (stellar lifetime)

Gjergo+23
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Here i is the tracked isotope:
dM, s (1)
dt

I(1) = Xppy.i€ g
SFR(1) o My, (1)
O,(t) = X(t)|wSFR(?)]

= + I,(t) — X,()SFR(t) + R(t) — O(1)

all—channels

R(O= ) Rl
C

Where C are AGB, CCSN, SNila,
magnetohydrodynamic SN jets
(MHDJ), NSM, Collapsars, etc.

The full chemical evolution equations

Matteucci & Greggio (1986)
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Here i is the tracked isotope:
dM, s (1)
dt

I(1) = Xppy.i€ g
SFR(1) o My, (1)
O,(t) = X(t)|wSFR(?)]

= + I,(t) — X,()SFR(t) + R(t) — O(1)

all—channels

R(= ) R
C

Where C are AGB, CCSN, SNila,
magnetohydrodynamic SN jets
(MHDJ), NSM, Collapsars, etc.

My
~ RAGB,i(t) — w(t — 1,)0,,(t — 7,)p(m)dm
I M,
My | 05 i
= Rype (1) = A S0yt — T Wyt — 7,,, Yl
* MBm | ¢ Minin _
Mg,

~ RLIMS,i(t) =1 -A) w(t — 7,,)0,,:(t — 7,)p(m)dm

Mg
"M,
~ RSNCC,i(t) — l//(t _ Tm)Qmi(t o Tm)¢(m)dm
J MBM
nMU
~ Ryupyi(t) = 0.01 X O, w(t — t,)p(m)dm
J MBM
~min(t,ty)

T

The full chemical evolution equations

Matteucci & Greggio (1986)

X ¢p(m)dm
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Here i is the tracked isotope:
dM, s (1)
dt

I(1) = Xppy.i€ g
SFR(1) o My, (1)
O,(t) = X(t)|wSFR(?)]

= + I,(t) — X,()SFR(t) + R(t) — O(1)

all—channels

R(= ) R
C

Where C are AGB, CCSN, SNila,
magnetohydrodynamic SN jets
(MHDJ), NSM, Collapsars, etc.

The full chemical evolution equations

Matteucci & Greggio (1986)

PMBm
~ RAGB,i(t) — l//(t _ Tm)Qmi(t o Tm)¢(m)dm
o ML
My | 05 i
= Rype () = A SOyt = T, Yyt — 7, ) | X p(m)dm
« MBm —:A/;Z;Z )
~ Ry s i) = (1 —A) w(t—,)0,(t—1,)p(m)dm
o MB
"M, "
~ RSNCC,i(t) — w(t — 7,)0,,(t — 7,)p(m)dm
J My,
M M,
~ Ryppy (1) = 0.01 X Q, w(t — 7,,)p(m)dm
J MBM
~min(t,ty)

T
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Here i is the tracked isotope:
dM, s (1)
dt

I(1) = Xppy e ™"
SFR(1) o My, (1)
O,(t) = X(t)|wSFR(?)]

all—channels

R(= ) R
C

Where C are AGB, CCSN, SNila,
magnetohydrodynamic SN jets
(MHDJ), NSM, Collapsars, etc.

= + I,(t) — X,()SFR(t) + R(t) — O(1)

The full chemical evolution equations

Matteucci & Greggio (1986)

My
~ RAGB,i(t) — w(t — 7,)0,,(t — 7, )p(m)dm
IM,
My | 05 i
= Rype (1) = A S0yt — T, Wyt — 7,,, Yl
* MBm | ¢ Minin _
Mg,
~ RLIMS,i(t) — (1 _ A) W(t T 7:m)Qmi(t o Tm)¢(m)dm
0y MB
"M, "
~ Ry (1) = w(t — 7,)0,,(t — 7,)p(m)dm
] MBM
M,
~ Ryupy () = 0.01 X Q, w(t — t,,)p(m)dm
J MBM
~min(t,7y)

T

X ¢p(m)dm

NSMs in single stellar populations

follow a delayed time distribution
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Here i is the tracked isotope:
dM, s (1)
dt

I(1) = Xppy e ™"
SFR(1) o My, (1)
O,(t) = X(t)|wSFR(?)]

all—channels

R(= ) R
C

Where C are AGB, CCSN, SNila,
magnetohydrodynamic SN jets
(MHDJ), NSM, Collapsars, etc.

= + I,(t) — X,()SFR(t) + R(t) — O(1)

The full chemical evolution equations

Matteucci & Greggio (1986)

"My
~ RAGB,i(t) — w(t — 7,)0,,(t — 7, )p(m)dm
JM,
My | 05 i
= Rype () = A SOyt = T, Yyt — 7, ) | X p(m)dm
© MBm | “ Himin N
Mp,

~ RLIMS,i(t) = -A) w(t — 7,,)0,,:(t — 7,)p(m)dm
My Only ~1% of massive

. » My ( O y stars may have

SNCC,i 1, v mz == Strong enough
By - .

M, magnetic fields

~ Ryppy () =001 X Q| w(t —7,)p(m)dm For MHDJs
I Mg,
~min(t,7y)

~ Ry (1) = akQ; fnsy (WP (t — 7)dr

T

NSMs in single stellar populations

follow a delayed time distribution
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