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(7 February 1824 – 12 May 1910)XIII. On the spectra of some of the nebulæ.
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https://classic.sdss.org/dr5/algorithms/spectemplates/
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Sir William Huggins is also responsible for 

Discovering the following element.
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Nebulium

云 yún (cloud) + 气 qì (gas)
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What was known of elements at this time?
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Ira Sprague Bowen Nature, 
v. 120, p. 473 (1927)

https://www.astrobin.com/s79n6g/0/

O III H-αHe IH-βH-γ

hydrogen alpha (H-alpha)

doubly ionised oxygen (OIII) 


 ionised sulfur (SII)
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But where does this oxygen come from?
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Astrophysical sites where nucleosynthesis occurs

11

Meixner+21

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM



Astrophysical sites where nucleosynthesis occurs

11

Meixner+21

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM



Astrophysical sites where nucleosynthesis occurs

11

Meixner+21

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Big Bang 
(H1, H2, He3, He4, Li7)

Cosmic rays 
(Be and B)

Stellar-born sites 
(C through U)



Astrophysical sites where nucleosynthesis occurs

11

Meixner+21

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Big Bang 
(H1, H2, He3, He4, Li7)

Cosmic rays 
(Be and B)

Stellar-born sites 
(C through U)



Astrophysical sites where nucleosynthesis occurs

11

Meixner+21

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Big Bang 
(H1, H2, He3, He4, Li7)

Cosmic rays 
(Be and B)

Stellar-born sites 
(C through U)



12

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Low-to-intermediate 

mass stars

0.07 to 8 Msun



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Low-to-intermediate 

mass stars

0.07 to 8 Msun



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Low-to-intermediate 

mass stars

0.07 to 8 Msun



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Low-to-intermediate 

mass stars

0.07 to 8 Msun



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Low-to-intermediate 

mass stars

0.07 to 8 Msun



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Low-to-intermediate 

mass stars

0.07 to 8 Msun

Massive 

stars

10 to 150 Msun



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Low-to-intermediate 

mass stars

0.07 to 8 Msun

Massive 

stars

10 to 150 Msun



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Low-to-intermediate 

mass stars

0.07 to 8 Msun

Massive 

stars

10 to 150 Msun



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Low-to-intermediate 

mass stars

0.07 to 8 Msun

Massive 

stars

10 to 150 Msun



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Low-to-intermediate 

mass stars

0.07 to 8 Msun

Massive 

stars

10 to 150 Msun



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Low-to-intermediate 

mass stars

0.07 to 8 Msun

Massive 

stars

10 to 150 Msun



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Low-to-intermediate 

mass stars

0.07 to 8 Msun

Massive 

stars

10 to 150 Msun



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Low-to-intermediate 

mass stars

0.07 to 8 Msun

Massive 

stars

10 to 150 Msun

Delayed time

Enrichment



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Low-to-intermediate 

mass stars

0.07 to 8 Msun

Massive 

stars

10 to 150 Msun

Delayed time

Enrichment



13

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Low-to-intermediate 

mass stars

0.07 to 8 Msun

Massive 

stars

10 to 150 Msun

Delayed time

Enrichment



How are elements produced

14

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Big Bang 
(H1, H2, He3, He4, Li7)

Cosmic rays 
(Be and B)

Stellar-born sites 
(C through U)



How are elements produced

14

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Big Bang 
(H1, H2, He3, He4, Li7)

Cosmic rays 
(Be and B)

Stellar-born sites 
(C through U)



How are elements produced

14

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Big Bang 
(H1, H2, He3, He4, Li7)

Cosmic rays 
(Be and B)

Stellar-born sites 
(C through U)



How are elements produced

14

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Big Bang 
(H1, H2, He3, He4, Li7)

Cosmic rays 
(Be and B)

Stellar-born sites 
(C through U)

Galactic Chemical Evolution (GCE)

Deals with these successive enrichments



How are elements produced

14

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 1 — GALACTIC CHEMICAL EVOLUTION — JAN 5, 2026 — EDA.GJERGO@GMAIL.COM

Big Bang 
(H1, H2, He3, He4, Li7)

Cosmic rays 
(Be and B)

Stellar-born sites 
(C through U)

Galactic Chemical Evolution (GCE)
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Since when did we start learning 
where elements come from?



• Relevant notations: 

• dex is  

• Where H is defined as:  
• Later, abundance notation: 

•  

• Neutron-capture elements are among the 
least abundant elements in nature 
• ~6 dex lower than Oxygen, ~10 dex 

lower than H

log ϵX = log (NX /NH) + 12

log ϵH = 12

[X/H] = log10 (X/H)* − log10 (X/H)⊙

Chemical abundances in the Sun

15

H

O
Fe

Neutron capture elements

With data from:
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• GCE studies the production of elements and 
isotopes over the lifetime of a galaxy. 

• Questions we want to answer: 
• What history may have lead to present-day 

observed abundances? 
• How do these abundances change with 

environment?

Why astrophysical metals (Z) are  
all elements but H and He?

(Credit: NASA/CXC/M.Weiss)

Cosmic Gas Abundances as measured by the CHANDRA X-ray Observatory

Metallicity (Z), Only 2% of the ISM
…
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Missing in B2FH: Galactic Chemical Evolution (GCE)

GCE∫
19

In short, GCE is the field that integrates YIELDS from nucleosynthesis sites  
over the evolutionary history of galaxies.

e.g.: 

Galaxy properties

Outfl

IMF
stellar 

migr.
Infall 

dust

SFR

Gjergo+23Nucleosynthesis sites
Thermo
nuclear 

fusion
Novae and 

SNe

neutron-rich 

media

cosmic 

rays
BBN

AGN

assembly
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SFR and IMF  
are crucial

ℬ(m, t) = SFR(t) × IMF(m)

total stellar mass 
produced 

per unit time

in reconstructing the  
Birthrate function ℬ

distribution of 
newborn stars as a 
function of mass

How does GCE reconstruct stellar populations?

dM*

dt
dN*

dm

We need to know which stars form at which times.
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The other core ingredient: Star formation in galaxies

Bissaldi et al. (2007)

Ellipticals

Spirals

Conceptually…

TIME

SF
R
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Stellar lifetimes of single stellar populations

~IIIIII
Let’s consider stars 


born in a single stellar population

Rana (1987)

Initial mass function 

of stellar populations
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How do stars contribute to GCE?
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How do stars contribute to GCE?

Through yields: 

yields are star ejecta, in solar masses, broken down by isotope
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Can we truly separate SFR and IMF?

ℬ(m, t) = SFR(t) × IMF(m)
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Can we truly separate SFR and IMF?

ℬ(m, t) = SFR(t) × IMF(m)

(Spoiler alert: no)

Let us have a closer look at how stars form
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Thermonuclear processes…

43

Thermonuclear reactions:
• Are exothermic
• Involve the collision between two 

nuclides
• Don’t occur for isotopes heavier 

than 56Fe/56Ni
• Don’t involve weak processes 

(preserve the number of p and n)

Credit: Ashby+18

EDA GJERGO — WUHAN UNIVERSITY — GALACTIC CHEMICAL EVOLUTION OF HEAVY ELEMENTS — APR 22ND, 2022 FOR UNIVERSITY OF BONN, GERMANY



Thermonuclear Fusion

44

(core)

H + H = He
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How are heavy elements different from lighter ones?

45Credit: Ashby+18

Elements up until the iron-
nickel peak 
( ) may form 
via thermonuclear reactions

Beyond, an increasing 
Coulomb barrier
prevents nuclides from 
undergoing fusion

A ∼ 56, Z ∼ 26
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Iron peak elements



While heavier elements…

46

Other mechanisms are at work. 
Mainly:

NEUTRON CAPTURE
The capture of neutrons onto nuclides 
in neutron-rich environments 
(s-process and r-process)

(Omitted from this talk are p-
processes, i-processes, and p-
processes)

ν

Credit: Ashby+18

EDA GJERGO — WUHAN UNIVERSITY — GALACTIC CHEMICAL EVOLUTION OF HEAVY ELEMENTS — APR 22ND, 2022 FOR UNIVERSITY OF BONN, GERMANY



47

Since when did we start learning 
where elements come from?
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Since when did we start learning 
where elements come from?

Herman AlpherGamov

All the elements

Formed in the Big Bang!

No, elements formed

Over time in stars
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“B2FH”: the seminal paper

E.M. Burbidge

G.R. Burbidge W. A. Fowler

F. Hoyle
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© ESO

The Hertzsprung–Russell diagram
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© ESO

The Hertzsprung–Russell diagram

Where hydrogen burning occurs
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Qniemiec on Wiki commons

Dominant stellar 
nucleosynthesis routes 
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https://commons.wikimedia.org/wiki/User:Qniemiec


Credit: Penn State Astronomy & Astrophysics
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Credit: Penn State Astronomy & Astrophysics
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Credit: Penn State Astronomy & Astrophysics
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Credit: Penn State Astronomy & Astrophysics
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25 Msun lifetime: 8-9 Myr
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25 Msun lifetime: 8-9 Myr

10.000 years
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25 Msun lifetime: 8-9 Myr

10.000 years

5 months
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25 Msun lifetime: 8-9 Myr

10.000 years

5 months

6 months
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25 Msun lifetime: 8-9 Myr

10.000 years

5 months

6 months

3 days
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The Kippenhahn diagram (Kippenhahn, Weigert, Weiss, 2012)

Braithwaite & Spruit (2017)



Mass loss for massive stars
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Limongi & Chieffi (2018)
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Fred Hoyle
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Fred Hoyle

Roderick Oliver Redman
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Meanwhile, lower mass stars… Credit: Penn State Astronomy & Astrophysics

IC 418 planetary nebula (the Spirograph Nebula, © HST)
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Surprisingly, these low-to-intermediate mass stars produce about half of the present-day heavy (relative to iron) elements



Neutron-capture elements
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https://www.bnc.hu
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Neutron-capture elements
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https://www.bnc.hu

• Most heavy (A > 56) elements are produced by 
neutron capture 

• Slow process (s-processes) 

 (100-1000 years)nn ∼ 108−13cm−3, tβ ≪ tn ≃ 109s
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• Rapid process (r-processes ) 

 

(Pagel, 2009, Chapter 6)

nn > 1019−34cm−3, tβ ≫ tn ≃ 1s



Neutron-capture elements

59

https://www.bnc.hu

• Most heavy (A > 56) elements are produced by 
neutron capture 

• Slow process (s-processes) 

 (100-1000 years)nn ∼ 108−13cm−3, tβ ≪ tn ≃ 109s

NSM
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• Rapid process (r-processes ) 

 

(Pagel, 2009, Chapter 6)

nn > 1019−34cm−3, tβ ≫ tn ≃ 1s



• Relative to the β-decay, ~ ½ of the elements are produced 
slowly (s-process), the other ½ rapidly (r-process) 

• s-processes result from successive thermal pulses of AGB 
stars (e.g., Cristallo+15) & massive stars (e.g., Limongi & 
Chieffi, 2018) 

• r-processes sites are still uncertain, but candidates 
include: 
• NS-NS coalescence (verified! Watson+19) 
• MHDJs? (Winteler+12) 
• Neutrino-driven winds? (mainly SNe, Shibagaki+16)

Neutron-capture elements

60

(Credit: EMMI, GSI/Different Arts)

NSM
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A nuclear physicist’s (isotopic) periodic table

61

(Credit: EMMI, GSI/Different Arts)
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A nuclear physicist’s (isotopic) periodic table

61

(Credit: EMMI, GSI/Different Arts)

Beta decay
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s-process

62 s-processes in AGB stars (Cristallo+11, +15)
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https://www.youtube.com/watch?v=BaUjNiJYgO4


s-process

62 s-processes in AGB stars (Cristallo+11, +15)
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r-process
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r-process in the jet-like explosions of magneto-rotational core-collapse SNe (Nishimura+15)
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https://youtu.be/MbH7sNQpZ-8
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R-process yields (Gjergo+26b)

64

•dynamical occur pre-
coalescence: 

•driven by tidal forces  

•can reach heavy nuclei 
like U 

• jet ejecta occur post-
coalescence 

• Weaker, cannot reach 
heaviest nuclei 

(Shibagaki+16) (Suzuki+18) (Martin+15)

(Shibagaki+16)

(Nakamura+15)

(            +19)

0.03 solar masses is the usual ejected mass  

in a coalescence event

EDA GJERGO — WUHAN UNIVERSITY — GALACTIC CHEMICAL EVOLUTION OF HEAVY ELEMENTS — APR 22ND, 2022 FOR UNIVERSITY OF BONN, GERMANY



The yields of s- and r-processes

65 Cowan & Thielemann (2004)

The magic neutron numbers 82, 126, 184 where 
the yields peak 
• s-processes are closer to the valley of 

stability, so Z+N=A will be larger for a given N 
• r-processes they have to decay several times 

before reaching the valley of stability, Z+N=A 
will be smaller for a given N

(Credit: EMMI, GSI/Different Arts)
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Elemental abundances in individual stars

66

Frebel+18: Spectra of two stars of similar temperature and metallicity.  
HS122563 is  an r-process deficient star. HE 1523-0901 is an r-process-enhanced star.
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What are the candidate r-process sites?

67

(MHDJ)

(NSM)

Core-collapse  
supernovae

Farouqi+22

(          )
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What are the candidate r-process sites?

67

(MHDJ)

(NSM)

Core-collapse  
supernovae

Farouqi+22

(          )

Only 
confirmed 

site 

Others are 
theoretical 
r-process 

production 
sites 

(And all three 
associated 

with massive 
stars)
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Let’s focus on NSM

68

APS/Alan Stonebraker, adapted from simulations by NASA/AEI/ZIB/M. Koppitz and L. Rezone

CREDIT: ESO/L. Calçada. Music: Johan B. Monell (www.johanmonell.com)

Binary system Coalescence (Merger) —>

NSM jet

NS or BH
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http://alanstonebraker.com/
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The r-process enrichment of neutron star mergers
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Kulmann (2023, PhD Thesis)
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Simonetti+19,  full derivation of  in Greggio+05p1

• Equivalent to power law, but motivated by GR 
• It is normalized across cosmic time as: 

 

• (30 Myr for 9  and 4 Myr for 50 )

∫
τHubble

τini=10Myr
f(τ)dτ = 1

M⊙ M⊙

The delayed time distribution for NSM
• The delayed time distribution (DTD, or ) is the distribution across time of NS-NS coalescence 

episodes generated from one instantaneous burst of star formation (in unitary mass)
f(τ)

Gjergo+26b
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Variations of the NSM rate

Normalized to Abbott+21 Normalized to Abbott+17

(IMF integral) 

 is the fraction 
of total star-forming gas mass 

which will produce NS

ka = 5.97 × 10−3
 is the fraction 

of NS that will undergo a merger 
event at a given instant . Taken 
to be time-independent

αNSM = 1.02 × 10−2

τ

RNSM(t) = kaαNSM ∫
min(t,τHubble)

τini

Ψ(t − τ)fNSM(τ)dτ

Gjergo+26b

71
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Other enrichment processes
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• Most GCE models assume primordial gas as IC 

• The red vertical estimate for  comes from WMAP 
• Circles represent observed abundances (oversimplification +  

Lithium problem) 

Ωm

Initial conditions 
(Primordial gas)

73

NASA/WMAP 

Steigman (2000)
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• Spallation is the fission caused 
by cosmic rays impinging 
onto heavier nuclides.  

• Forms isotopes with atomic 
mass 9, 10, 11 

• i.e., isotopes of boron and 
beryllium 

• Spallation also produces Li 
and some Li

6
7

Spallation 
(Cosmic rays)

74 Credit: Lawrence Berkeley Lab
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HOW MANY GENERATIONS OF STARS DO THE VARIOUS ELEMENTS OF THE SOLAR SYSTEM (SUCH AS OUR BODY) NEED TO GO THROUGH?

RCCSN       ~  (30 years) -1 

Mgas         ~ 1010      Msun 

tOBstar        ~ 107      years 

Mmix         ~ 3 x 104 Msun

CCSN: Core Collapse Supernova Explosions - From Massive Stars

Rmix          ~  RCCSN *tOBstar *( Mmix / Mgas)  

75

Courtesy of Zhiyu Zhang
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- 罗马       不是一天                       建成 的

The Sun

Assuming the Milky Way evolved for 9 billion years before the Sun: 

 tMW=9 Gyr, so NCCSN ~ Rmix* tMW ~ 900  

It means it took 900 supernova explosions to enrich the sun 
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Courtesy of Zhiyu
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- The devil knows what I’ve been through



GCE  
rationale

77
Gjergo+23
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The full chemical evolution equations

78

• Here  is the tracked isotope: 

•  

•  

•  

•  

•  

• Where C are AGB, CCSN, SNIa, 
magnetohydrodynamic SN jets 
(MHDJ), NSM, Collapsars, etc.

i
dMgas,i(t)

dt
= + Ii(t) − Xi(t)SFR(t) + Ri(t) − Oi(t)

Ii(t) = XBBN,ie−t/τeff

SFR(t) ∝ Mk
gas,tot(t)

Oi(t) = Xi(t)[ωSFR(t)]
Ri(t) =

all−channels

∑
C

RC,i(t)

Matteucci & Greggio (1986)
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•  
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•  

• Where C are AGB, CCSN, SNIa, 
magnetohydrodynamic SN jets 
(MHDJ), NSM, Collapsars, etc.

i
dMgas,i(t)

dt
= + Ii(t) − Xi(t)SFR(t) + Ri(t) − Oi(t)

Ii(t) = XBBN,ie−t/τeff

SFR(t) ∝ Mk
gas,tot(t)

Oi(t) = Xi(t)[ωSFR(t)]
Ri(t) =

all−channels

∑
C

RC,i(t)

  

  

   

  

  

 

RAGB,i(t) = ∫
MBm

ML

ψ(t − τm)Qmi(t − τm)ϕ(m)dm

RSNIa,i(t) = A∫
MBM

MBm
[∫

0.5

μmin

f(μ)Qmi(t − τm2
)ψ(t − τm2

)dμ] × ϕ(m)dm

RLIMS,i(t) = (1 − A)∫
MBM

MBm

ψ(t − τm)Qmi(t − τm)ϕ(m)dm

RSNCC,i(t) = ∫
MU

MBM

ψ(t − τm)Qmi(t − τm)ϕ(m)dm

RMHDJ,i(t) = 0.01 × Qi ∫
MU

MBM

ψ(t − τm)ϕ(m)dm

RNSM,i(t) = αkQi ∫
min(t,τH)

τi

fNSM(τ)Ψ(t − τ)dτ

Matteucci & Greggio (1986)
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Matteucci & Greggio (1986)

NSMs in single stellar populations 
 follow a delayed time distribution
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The full chemical evolution equations

78

Only ~1% of massive 
stars may have 
Strong enough 
magnetic fields 

For MHDJs
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