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Brief GCE recap
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How are elements produced
Galactic Chemical Evolution (GCE)
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How are elements produced
Galactic Chemical Evolution (GCE)

Pearson Education, Addison Wesley
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Closed box models are already remarkably powertful
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Alpha-element
enrichment in the
Milky Way satellites
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Alpha-element
enrichment in the
Milky Way satellites
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Observational Evidence
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Big questions

CONNECTING QUARKS WITH THE COSMOS: 11 SCIENCE QUESTIONS FOR THE NEW CENTURY, NATIONAL ACADEMIES PRESS (2003)

. What is Dark Matter? 8. What are the new states of matter at
. exceedingly high Density and
. What is the Nature of Dark Energy? Temperature?

How did the Universe begin? 9. Are there additional space-time

Did Einstein have the last word on dimensions?

Gravity?
i 10.How were the elements
from Iron to Uranium

pow N oo

5. What are the masses of the neutrinos,
and how have they shaped the

evolution of the universe? made?
6. How do cosmic accelerators work 11.ls a new theory of matter needed at
and what are they accelerating? the highest energies?

/. Are protons unstable?



http://www.nap.edu/openbook.php?isbn=0309074061
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Big questions

CONNECTING QUARKS WITH THE COSMOS: 11 SCIENCE QUESTIONS FOR THE NEW CENTURY, NATIONAL ACADEMIES PRESS (2003)
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* qat IS t € atu re o ar nergy * Tem peratu re? VoruMe 29, NUMBER 4 OcroBer, 1957
3. How did the Universe begln? 9 Are there additional Space_time Synthesis of the Elements in Stars®
. . . . . E. MARGARET BURBIDGE, G. R. BURBIDGE, WiLLIAM A. FOwWLER, AND F. HovLE

4 . D I d EI N Stel N h ave th e IaSt WO rd on d Imension S? Kellogg Radiation Laboratory, California Institute of Technology, and

. ) Mount Wilson and falomqr Observatories, Carnegie Institution of Washington,

G raVIty . California Institute of Technology, Pasadena, California

10.How were the elements

from Iron to Uranium Burbid99+57 (B2FH)
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6. How do cosmic accelerators work 11.ls a new theory of matter needed at
and what are they accelerating? the highest energies?

/. Are protons unstable?
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and how have they shaped the

Neutron Star Mergers (NSM):

Very hot topic since the first NS-NS merger event
observed in 2017 by LIGO

CREDIT: NASA/Goddard Space Flight Center
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Neutron-capture astrophysical sites:
Associated with stellar progenitors of different masses

. Sl

AGB stars (ALMA) Massive stars’ ' Collapsars (NASA/SkyWorks) NSM (simulation)
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. * r-processes sites are still uncertain:
* s-processes result from successive »
 Neutron star mergers (verified! Watson+19)

e thermal pulses of AGB stars (e.g., Cristallo+15)

e Magnetohydrodynamic jets ? (Winteler+12)
e Core-collapse SNae (e.g., Limongi & Chieffi, 2018)

e Collapsars ? (e.g., Shibagaki+16, Siegel+19)
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In the Milky Way

With s-processes
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In the Milky Way

With collapsars
and/or magneto-
rotational SNae
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In the Milky Way e
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GCE of the Periodic Table of Elements in GalCEM
1 2 3 4 5 §) 7 8 9 10 11 12 13 14 15 16 17 18

-

m light Z CNO, F 0 odd-Z Bl iron-peak m radioactive
Bl spallation e alpha Bl pre-iron-peak Bl post-iron-peak B neutron capture
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AGB yields for 12C (Cristallo+15)

Gjergo+23, ApJS

GCE isotope evolution
with GalCEM

~1.40
-1.64
~1.88
-2.12
~2.36 5
—2.60 @
~2.84
~3.08
~3.32
~3.56

yield
mass

e |t adapts to the # of isotopes included in all the
selected yield tables.

e Unlike other public codes (VICE, ChemPy,
NuPyCEE), it uses full yield tabulations and does |

not average over the IMF metallicity
SNIl yields for 160 (Limongi & Chieffi, 2018)

e |tis afast code (x50 then equivalent private
code) because:

2.0

* |t computes the yield interpolation in pre-

- 0.00
1.8

processing 5 o

e |t uses efficient integration and differentiation ¢ 16 . :iﬁﬁig
methods | a0
e https://github.com/egjergo/GalCEM N . . T ~6.00

-5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5
metallicity

14


https://github.com/egjergo/GalCEM

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 2 — THE STELLAR INITIAL MASS FUNCTION- JAN 8, 2026 — EDA.GJERGO@GMAIL.COM

One-zone GCE vs Cosmo Sim

15



EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 2 — THE STELLAR INITIAL MASS FUNCTION- JAN 8, 2026 — EDA.GJERGO@GMAIL.COM

* 10-15 isotopes

e 12-24 hours for low/mid
resolution

One-zone GCE vs Cosmo Sim

e Coarse stellar population grid

* Full dynamics
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One-zone GCE vs CoSmo Sim  ° 175 sotopes
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« Same baryons everywhere: The same baryonic matter found on Earth is present throughout
the Universe
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the Universe

* but elemental and isotopic abundances vary across environments and cosmic time.

* Stars make the elements: Each star synthesizes and ejects different isotopic yields, set by its
initial mass and composition, and by its evolutionary pathway.

* What GCE does: Galactic chemical evolution models combine a galaxy’s IMF (initial mass
function) and SFH (star formation history) with stellar yields and stellar lifetimes to predict the
time evolution of elemental and isotopic abundances.

 Why it matters: Abundance patterns act as tight constraints on galaxy evolution (Lecture 3)

 Where it is incomplete: Key uncertainties and open questions remain (Lecture 3)
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How does GCE reconstruct stellar populations?
We need to know which stars form at which times.

total stellar mass SFR and IMF distribution of
runitame arecrucial - TREREES
dM., dN;
dt in reconstructing the dm
Birthrate function 98

PB(m,t) = SFR(r) X IMF(m)
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How are elements produced
Galactic Chemical Evolution (GCE)
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Stellar IMF: stellar mass distribution of a single star-forming event
Reviews: Kroupaoi, Kroupa+13,

Kroupa, Gjergo, et al. (2024)
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Stellar IMF: stellar mass distribution of a single star-forming event
Reviews: Kroupaot, Kroupa+13, NGC 6791- old open cluster
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Stellar IMF: how do stars form?
Young, star-forming Polaris flare

(Herschel, Andre Ph. et al. 2014)
Kroupa, Gjergo, et al. (2024) i e R
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Stellar IMF: how do stars form?
Young, star-forming Polaris flare

Kroupaoi, Kroupa+1y,
b Pati3 (Herschel, Andre Ph. et al. 2014)
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Stars form 1n 0.1pc thin fragmenting filaments
and
not 1 a super-sonic gravo-turbulent gas medium :

See review by
based on results from the Herschel space

Recent studies of the nearest star-forming clouds of the Galaxy at submillimeter wavelengths with the Herschel Space
Observatory have provided us with unprecedented 1images of the initial and boundary conditions of the star-formation
process. The Herschel results emphasize the role of interstellar filaments in the star-formation process and connect
remarkably well with nearly a decade’s worth of numerical simulations and theory that have consistently shown that the
interstellar medium (ISM) should be highly filamentary on all scales, and star formation is intimately related to self-
gravitating filaments. In this review, we trace how the apparent complexity of cloud structure and star formation is
governed by relatively simple universal processes — from filamentary clumps to galactic scales. We emphasize two
crucial and complementary aspects: (1) the key observational results obtained with Herschel over the past three years,

21



Stars form 1n 0.1pc thin fragmenting filaments
and
not 1 a super-sonic gravo-turbulent gas medium :

See review by
based on results from the Herschel space

Recent studies of the nearest star-forming clouds of the Galaxy at submillimeter wavelengths with the Herschel Space
Observatory have provided us with unprecedented 1images of the initial and boundary conditions of the star-formation
process. The Herschel results emphasize the role of interstellar filaments in the star-formation process and connect
remarkably well with nearly a decade’s worth of numerical simulations and theory that have consistently shown that the
interstellar medium (ISM) should be highly filamentary on all scales, and star formation is intimately related to self-
gravitating filaments. In this review, we trace how the apparent complexity of cloud structure and star formation is
governed by relatively simple universal processes — from filamentary clumps to galactic scales. We emphasize two
crucial and complementary aspects: (1) the key observational results obtained with Herschel over the past three years,

(see also the pioneering work of Phil Myers on star formation 1n filaments
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not 1 a super-sonic gravo-turbulent gas medium :

See review by
based on results from the Herschel space

Recent studies of the nearest star-forming clouds of the Galaxy at submillimeter wavelengths with the Herschel Space
Observatory have provided us with unprecedented images of the initial and boundary conditions of the star-formation
process. The Herschel results emphasize the role of interstellar filaments in the star-formation process and connect
remarkably well with nearly a decade’s worth of numerical simulations and theory that have consistently shown that the
interstellar medium (ISM) should be highly filamentary on all scales, and star formation is intimately related to self-
gravitating filaments. In this review, we trace how the apparent complexity of cloud structure and star formation is
governed by relatively simple universal processes — from filamentary clumps to galactic scales. We emphasize two
crucial and complementary aspects: (1) the key observational results obtained with Herschel over the past three years,

(see also the pioneering work of Phil Myers on star formation in filaments
(e.g. )

Thus: the ISM, where dense enough to cool sufficiently rapidly, molecularises and forms long thin
filaments. Density fluctuations along these cause potential fluctuations and the molecular gas falls towards
potential minima. There, proto-stars grow and regulate their accretion from the in-falling filament.
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Integrated Galaxy-wide
Initial Mass Functlon (IGIMF)

Jerabkova et al (2018)

Red: older
stellar populations

Blue: younger stars
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Formulation from

Kroupa & Weidner (2003) Integrated Galaxy Wlde

Weidner & Kroupa (2005, 06, 10,13)

i ke |itial Mass Function (IGIMF)

Kroupa et al. (2013)
[...] y Jerabkova et al (2018)

Jerabkova et al. (2018)

Yan et al. (2017,2021, 2023)

Kroupa, Gjergo, Jerabkova, Yan (2024
Gjergo et al. (2025)

Gjergo, Zhang, Kroupa (subm.)

Red: older
stellar populations

Blue: younger stars
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Formulation from

Kroupa & Weidner (2003) Integrated Galaxy Wlde

Weidner & Kroupa (2005, 06, 10,13)
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[...] b Jerabkova et al (2018)

Jerabkova et al. (2018)

Yan et al. (2017,2021, 2023)

Kroupa, Gjergo, Jerabkova, Yan (2024
Gjergo et al. (2025)

Gjergo, Zhang, Kroupa (subm.)

Red: older
stellar populations

The stellar IMF emerges only
imMF during the formation of
single stellar populations

Blue: younger stars

10 kpe
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Formulation from

Kroupa & Weidner (2003) Integrated Galaxy Wlde

Weidner & Kroupa (2005, 06, 10,13)
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Jerabkova et al. (2018)
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Red: older
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The stellar IMF emerges only
imMF during the formation of
single stellar populations

. Blue: younger stars
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Formulation from

Kroupa & Weidner (2003) Integrated Galaxy Wlde

Weidner & Kroupa (2005, 06, 10,13)

e oo |itial Mass Functlon (IGIMF)

Kroupa et al. (2013)
[...] | Jerabkova et al (2018)

Jerabkova et al. (2018)

Yan et al. (2017,2021, 2023)
Kroupa, Gjergo, Jerabkova, Yan (2024),
Gjergo et al. (2025)

Gjergo, Zhang, Kroupa (subm.)

Red: older
stellar populations

The stellar IMF emerges only
imF during the formation of
single stellar populations

The cumulative sum
of all stellar IMFs
formed in past 10 Myr
(The lifetime of a molecular cloud)
defines the galaxy-wide IME ~ 1wme
(gwIMF)

v Blue: younger stars
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Taurus star-forming region: closest SF-neighbor

DEC []

Closest SF region to us

Very young stars (1-5 Myr)

No star above 3 MQ
No OB stars
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Astrophotographer: © 2015 Alan Dyer

The Milky Way panorama: 14 composite optical images

Each image is obtained by stacks of 5 x 2.5 minute exposures.

The long exposure reveals the deep red H-alpha emissions from star-forming regions
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Southern cloud in Orion A: a SF region with no massive stars
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Southern cloud in Orion A: a SF region with no massive stars
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Southern cloud in Orion A: a SF region with no massive stars
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Southern cloud in Orion A: a SF region with no massive stars
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m

max ecl

relation from Yan+23 (Nanjing University)

No evidence for intrinsic dispersion:

The observed dispersion is smaller than the uncertainty on the measurement errors
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Most massive star in the embedded cluster

/Mo )

Mmax

l0g10(

) -

max ecl

Embedded cluster

— relation

mMass

2

3
IOQlO(MecI/M@ )

|
4

EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 2 — THE STELLAR INITIAL MASS FUNCTION—- JAN 8, 2026 — EDA.GJERGO@GMAIL.COM

Relation between the total embedded cluster stellar mass and its most massive star

Red dots with green error bars are
the running mean of observations,

with associated uncertainty

No evidence for intrinsic dispersion:

The observed dispersion is smaller than the
uncertainty on the measurement errors

The IGIMF solution is shown with
the black-dashed line

The grey line is a linear regression of the data
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Low-mass molecular clouds L Giant molecular clouds

—~

Are 1000 x 103 M, clouds equivalent to a single 106 M, cloud?
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Building an SSP: How Should We Sample the IMF?

Gjergo, Zhang & Kroupa (2025, subm.)
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Building an SSP: How Should We Sample the IMF?

Stochastic Sampling of the Canonical sIMF
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Building an SSP: How Should We Sample the IMF?
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Building an SSP: How Should We Sample the IMF?
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Building an SSP: How Should We Sample the IMF?
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Building an SSP: How Should We Sample the IMF?
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Building an SSP: How Should We Sample the IMF?
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Building an SSP: How Should We Sample the IMF?
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Building an SSP: How Should We Sample the IMF?
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Building an SSP: How Should We Sample the IMF? First introduced in
Kroupa-+13
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Building an SSP: How Should We Sample the IMF? First introduced in
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Building an SSP: How Should We Sample the IMF? First introduced in
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Building an SSP: How Should We Sample the IMF?  First introduced in
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Gjergo, Zhang & Kroupa (2025, subm.)
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Statistical mechanics at thermal
equilibrium is self-regulated:

A single parameter (average temperature)
determines the full distribution
The chaotic creation, annihilation, and
scattering of photons reaches a steady
state
The complexity of the microstates is
washed out by the equilibrium
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Where do stars form?

["is the percentage of stars

born in embedded clusters

Gjergo et al. (2025a) subm.
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by Cook et al. (2023)
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Hydrodynamical simulations
(Dinnbier et al., 2022)
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N-body simulation of a region in Taurus Aurigae:

stars are lost through dynamic interactions, not only through feedback Kroupa & Bouvier (2003)
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Movie of a direct N-body calculation (with
NBODY6) for a cluster with a mass of 3000
Msun.

The cluster is initially mass-segregated and
binary-rich (100% binary fraction).

Oh & Kroupa (2016)

Two-step mass ejection

Masses of stars are color-coded. Black holes
are marked with grey points.

The video shows a massive quadruple system
(composed of ~60 + 5 + 14 + 35 Msun stars) is
dynamically ejected from the cluster,
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