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The IMF and chemical evolution In context
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The variability of the IMF
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THE IMF DEPENDS ON SFR
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A case study: the starburst region 30 Dorados in the LMC
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This suggests that 30 Doradus
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IMF power exponent: a
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THE IMF DEPENDS ON METALLICITY

LI, 2023; NATURE, VOLUME 613, ISSUE 7944, P.460-462

Salpeter a= 2 35,

fr'om'Moe19

w.bin. corrected
from Liul9

Kroupa a; =1.3== Yanetal. 2020
» w/o bin. corrected
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93,000 spectroscopically observed
M-dwarf stars (low-mass) 1n the

100-300 parsec (pc) Solar
neighborhood.

They find unambiguous evidence
of a variable IMF that depends on
both metallicity and stellar age.

The stellar populations formed
at early times
contain fewer low-mass stars
compared to the canonical IMF,
independent of stellar metallicities.



https://ui.adsabs.harvard.edu/search/q=author:%22Li%2C+Jiadong%22&sort=date%20desc,%20bibcode%20desc
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IGIMF FOR LOW MASS STARS
IN HIGH-Z ELLIPTICAL GALAXIES
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Overview of the variable stellar IMF
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Overview of the variable stellar IMF
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Dependence on the SFR
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Marks & Kroupa (2012)
Kroupa (2013)

[...]

Jerabkova et al. (2018)
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Dependence on

the embedded cluster
stellar mass

and metallicity

Gjergo et al. (2024b) in prep.

Formulation from

Kroupa & Weidner (2003)
Kroupa & Weidner (2005)
Marks & Kroupa (2012)
Kroupa (2013)

[...]

Jerabkova et al. (2018)
Yan et al. (2019,2020, 2021)

Parameters to compute the stellar IMF

a1 = 13—|—Aa (Z— Z@),

3
()42:2.3+A04'(Z—Z@), ()
M.-dependent exponent
2.3, x < —0.87,
az = (4)
—0.41x +1.94, x> —0.87.
r = —0.14[Z] + 0.991og,,(pc1/10°) (5)

Stellar IMF for individual embedded clusters

2k, m—1(2) 0.08 < m/Mg < 0.50,
£x(m, Moo, Z) = AN, /dm = { k,m™22(%), 0.50 < m/Mg < 1.00, (7)
k,m—os(ZMect) 1.00 <m/Mg < Mmax ,
essbliaelh o cni iy
Mec) = / m g*(m) dma (8)
0.08 Mg
=/ £x(m) dm, (9)
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Table 1: Parameters
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Dependence on

the embedded cluster
stellar mass

and metallicity

Gjergo et al. (2024b) in prep.

Formulation from

Kroupa & Weidner (2003)
Kroupa & Weidner (2005)
Marks & Kroupa (2012)
Kroupa (2013)
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Jerabkova et al. (2018)
Yan et al. (2019,2020, 2021)
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Actual galaxy-wide IMF Dependence on SFR and metallicity (both functions of time)

IGIMF (or equivalently, gwIMF)

Mecl,max
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Integrated Galaxy-wide
Initial Mass Functlon (IGIMF)

Jerabkova et al (2018)

Red: older
stellar populations

Blue: younger stars




EDA GJERGO — NANJING UNIVERSITY — PRAGUE LECTURE 3 — IMF AND GCE IN CONTEXT — JAN 9, 2026 — EDA.GJERGO@GMAIL.COM

Formulation from

Kroupa & Weidner (2003) Integrated Galaxy Wlde

Weidner & Kroupa (2005, 06, 10,13)

i ke |itial Mass Function (IGIMF)

Kroupa et al. (2013)
[...] y Jerabkova et al (2018)

Jerabkova et al. (2018)

Yan et al. (2017,2021, 2023)

Kroupa, Gjergo, Jerabkova, Yan (2024
Gjergo et al. (2025)

Gjergo, Zhang, Kroupa (subm.)

Red: older
stellar populations

Blue: younger stars
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Formulation from

Kroupa & Weidner (2003) Integrated Galaxy Wlde

Weidner & Kroupa (2005, 06, 10,13)

e oo |itial Mass Functlon (IGIMF)

Kroupa et al. (2013)
[...] b Jerabkova et al (2018)

Jerabkova et al. (2018)

Yan et al. (2017,2021, 2023)

Kroupa, Gjergo, Jerabkova, Yan (2024
Gjergo et al. (2025)

Gjergo, Zhang, Kroupa (subm.)

Red: older
stellar populations

The stellar IMF emerges only
imMF during the formation of
single stellar populations

Blue: younger stars

10 kpe
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Formulation from

Kroupa & Weidner (2003) Integrated Galaxy Wlde

Weidner & Kroupa (2005, 06, 10,13)

e oo |itial Mass Functlon (IGIMF)

Kroupa et al. (2013)
[...] b Jerabkova et al (2018)

Jerabkova et al. (2018)

Yan et al. (2017,2021, 2023)

Kroupa, Gjergo, Jerabkova, Yan (2024
Gjergo et al. (2025)

Gjergo, Zhang, Kroupa (subm.)

Red: older
stellar populations

The stellar IMF emerges only
imMF during the formation of
single stellar populations

. Blue: younger stars

..3 2 9- AN of stars
i IMF=

10 kpe

A mass of stars
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Formulation from

Kroupa & Weidner (2003) Integrated Galaxy Wlde

Weidner & Kroupa (2005, 06, 10,13)

e oo |itial Mass Functlon (IGIMF)

Kroupa et al. (2013)
[...] | Jerabkova et al (2018)

Jerabkova et al. (2018)

Yan et al. (2017,2021, 2023)
Kroupa, Gjergo, Jerabkova, Yan (2024),
Gjergo et al. (2025)

Gjergo, Zhang, Kroupa (subm.)

Red: older
stellar populations

The stellar IMF emerges only
imF during the formation of
single stellar populations

The cumulative sum
of all stellar IMFs
formed in past 10 Myr
(The lifetime of a molecular cloud)
defines the galaxy-wide IME ~ 1wme
(gwIMF)

v Blue: younger stars

Opivhi 3 o AN of stars
';‘:;{. | IMF =

A mass of stars
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Where do stars form?

["is the percentage of stars

born in embedded clusters

Gjergo et al. (2025, RAA)

10_1?

Observational binned data
by Cook et al. (2023)

Shaded band is from
Hydrodynamical simulations
(Dinnbier et al., 2022)

mmmm  |G|IMF at birth
DKA22 < 10 Myr
# C23H, <10 Myr
# C23res <10 Myr
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|GIMF In practice

| Galaxy-wide IMF {IGIMF)

(linear Tow-mass slope, a;)

Gjergo et al. (2025, RAA)

Optimal sampling:
If the star-forming mass budget is insufficient

MaSS|VeStarS CannOtform —t -+ ———t—t—t—++} ———t—t——++} —+ —— ———t—t—t—++} bttt}
3¢ag (SFR/[Mg/yr]) =-5.0 I l0g10 (SFR/[Mg/yr]) =-1.5
— I
>
N~
i
- .
o 1 R N TN S Higher SFR:
= 109 10910 (SFR/[Mo/yr]) = 0.0 l0g10 (SFR/IMo/yr]) =3.0 | 1) Raises the entire gwIMF
O o1 2) Makes it top-heavy
| 10 (if the mass budget
= 105 is sufficient)
O
LU 101
(,) } } } ::Hi } } :::H:i-lo } } ::::i:(,)o 6 } } ::::Hi } } :::H:i-lo } } ::::i:(.)o
stellar mass [My]
Disclaimer: untested ex.trlalpolation — [Z]=-40 —— [Z]=-05 —— [Z]=+40.3 —— [Z]= +0.7
Z{eﬁf;ge] >rg'30?eeﬁ!'0't'es' — [2=-10 — [21=+00 —— [Z]=405 —— [2]=+1.0  7pg higher the metallicity, [Z]
Prop The steepr the low-mass slope

Gjergo et al. (2025)
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A special case of the IGIMF:
_high-z elliptical galaxies

I0910 (SFR/[M@/)/I’]) =2.0

mécime = dN../dlogi19 (M)

~
101 H [Z] = 1.0 \\~
Loz || [21=100 TSS

{|= = Kroupa e (2001) ~ o
107° | vanDokkum & Conroy (2024)

i O,l + : — :::i : : — :::1.0 1(-)0

Gjergo et al. (2025, RAA) stellar mass [Mo |

While the average IMF of
most spiral galaxies looks
like Kroupa (2001)
(Dashed-gray line)

Distant elliptical galaxies
have an average IMF like
the shaded green curve.

It happens to be a special
case of our galaxy-wide
variable IMF model
(IGIMF theory) for metal-
rich starburst galaxies
(red and blue curves)
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mm |inear a1(2) -—=- Zs Martin+15 Parikh+18
me  |OQistic a1(2) LaBarbera+19 Martin+19 Sarzi+18
—— Q1 can=1.3 Lonoce+23 Martin+23 Cinquegrana+22
10 1 ; 77
[ :
Dependence of o, (the low- S gl < c
mass slope) on metal content < 3 S
8‘ : o low-z AGNs
i > 3 loris+24
- 6 i ﬁ 3 Floris+ y
LL : =
= i
n 41 i
: L |
Gjergo et al. (2025, RAA) = o
é 2 = 1
o gl P <. — B .. o
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0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
metal mass fraction, Z = Mz/M gy,
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Galaxy-wide IMF (IGIMF)
(logistic low-mass slope, a;)

0% 1 logyo (SFR/IMolyr) =-5.0 1 logao (SFR/IMo/yr]) =-1.5

10 £ loguo (SFRAMolyr) = 0.0 10010 (SFRAMolyrl) = 3.0

Sicive = dN./dm [#/Mo]

o 1 1 1000 1 10 100
stellar mass [Mg]

— [Z] =-4.0 — [Z] =-0.5 — [Z] = +0.3 — [Z] = +0.7
— [Z] =-1.0 — [Z] = +0.0 — [Z] = +0.5 — [Z] = +1.0

Gjergo et al. (2025, RAA)
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Variation of the
stellar IMF at

extreme supersolar

metallicities

Gjergo et al. (2025, RAA)

dN./dm [#/M;]

G =

Stellar IMF, high-metallicity for

logistic (—

[Z]=10.3

10 1600?1 B
stellar mass [Mg]

-) and linear (—) low-mass a; slope

' . : S [Z]=0.5

Wr
—— ——
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I
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Ul
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Mmax — Mec| relation
linear low-mass slope (a7)
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Mmax — Mec| relation Mmax — Mec| relation
linear low-mass slope (a7) logistic low-mass slope (a7)
[Z] Metallicity [Z] Metallicity
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Chemical Evolution
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H
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THE EPOCHS OF EARLY-TYPE GALAXY FORMATION
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The CMB's meaning for
cosmological models
and the
role elliptical galaxies have

on this matter
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Image credit: Present-day galaxies (Ménard & Shtarkman, https://mapoftheuniverse.net/)
CMB (Planck Collaboration)
Current graphics: Gjergo & Kroupa (2025)

Arrow of time

Expanding Universe

Afterglow of the Birth of
Big Bang Early-Type Galaxies Present-day

Gjergo & Kroupa (2025)
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* Stars make the elements: Each star synthesizes and ejects different isotopic yields, set by its
initial mass and composition, and by its evolutionary pathway.

* What GCE does: Galactic chemical evolution models combine a galaxy’s IMF (initial mass
function) and SFH (star formation history) with stellar yields and stellar lifetimes to predict the
time evolution of elemental and isotopic abundances.

 Why it matters: Abundance patterns act as tight constraints on galaxy evolution (Lecture 3)

 Where it is incomplete: Key uncertainties and open questions remain (Lecture 3)
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