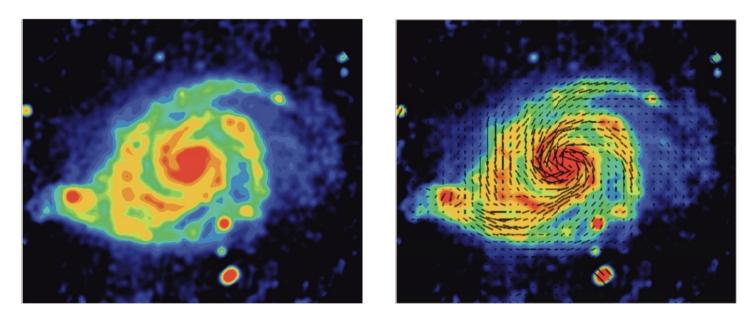
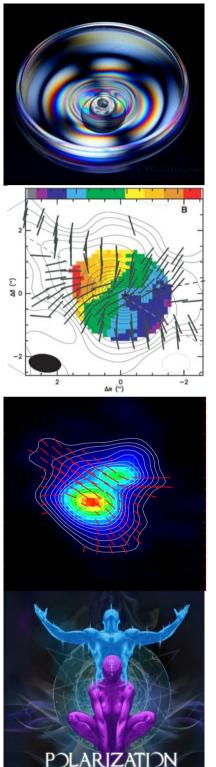


Astrophysical polarimetry

Dr. Frédéric Marin



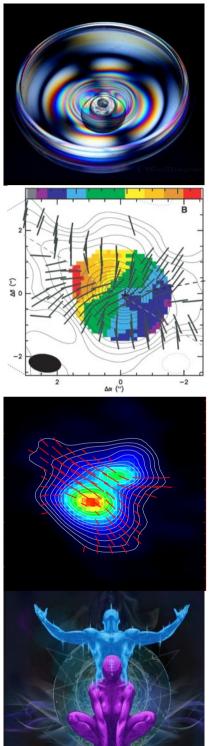
Total radio continuum emission from the "Whirlpool" galaxy M51 (NRAO/AUI)



Overview

- **General introduction**
- **II Polarization : what is it and where can we observe it ?**
- **III** Theory
- **IV** Polarization mechanisms
- **V** Observational techniques
- **VI** Modeling polarization
- **VII** Project about radio-loud quasars and polarization

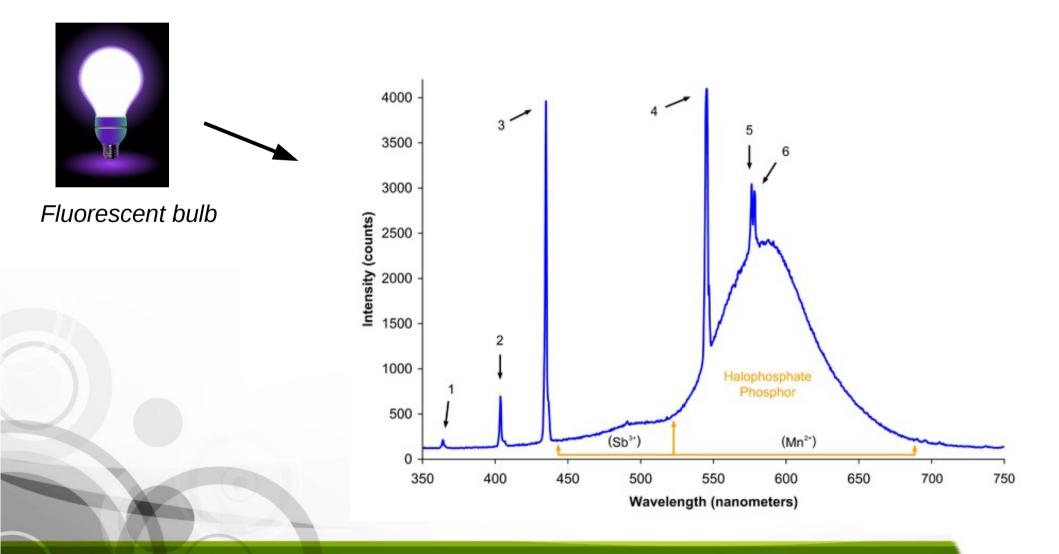
Any question ? frederic.marin@asu.cas.cz



Overview

- **General introduction**
- **II Polarization : what is it and where can we observe it ?**
- **III** Theory
- **IV** Polarization mechanisms
- **V** Observational techniques
- **VI** Modeling polarization
- **VII** Project about radio-loud quasars and polarization

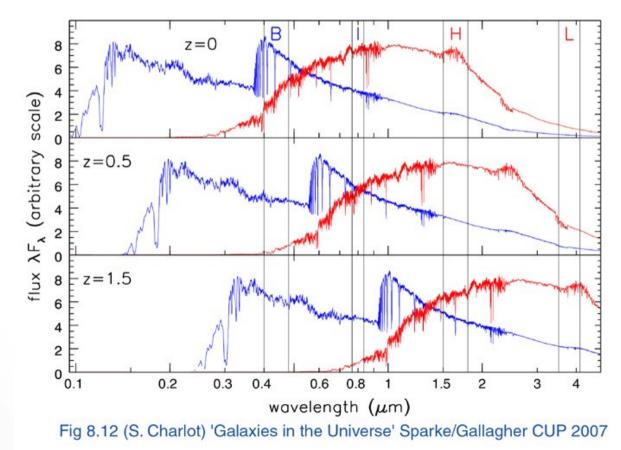
Astrophysics gets information from distant sources through light \rightarrow intensity of the radiation as a function of wavelength/energy



Astrophysics gets information from distant sources through light \rightarrow intensity of the radiation as a function of wavelength/energy

Intensity spectra (total flux) allow to probe:

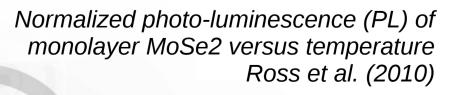
- Distance (through line redshift)

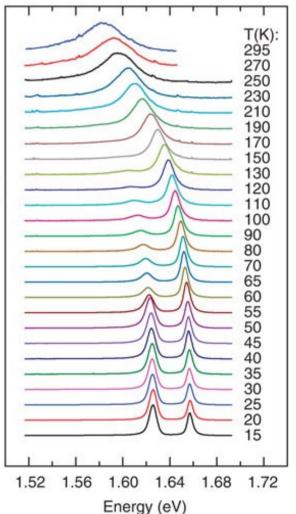


Astrophysics gets information from distant sources through light \rightarrow intensity of the radiation as a function of wavelength/energy

Intensity spectra (total flux) allow to probe:

- Distance (through line redshift)
- Temperature



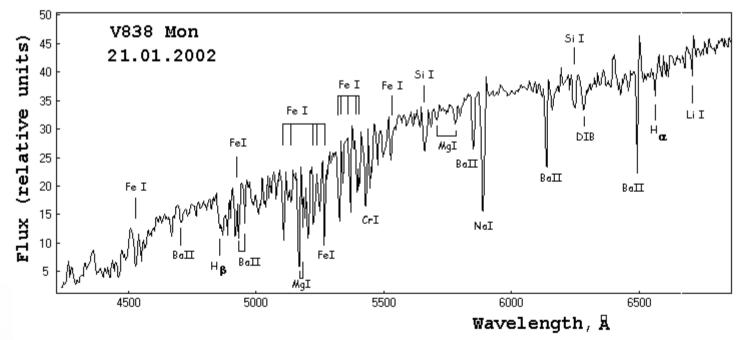


Normalized PL (a.u.)

Astrophysics gets information from distant sources through light \rightarrow intensity of the radiation as a function of wavelength/energy

Intensity spectra (total flux) allow to probe:

- Distance (through line redshift)
- Temperature

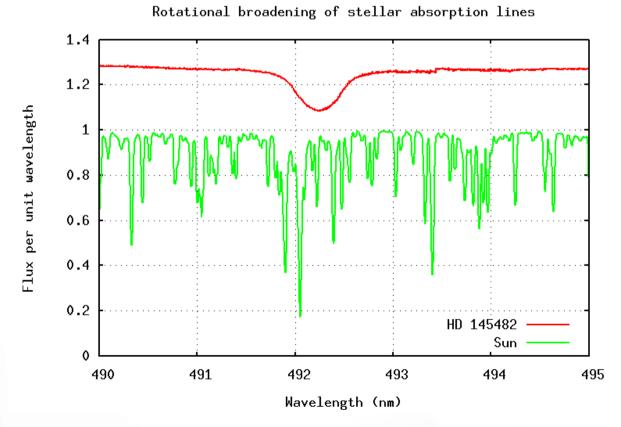


Spectrum of the nova V838 Mon in pre-maximum stage Barsukova et al. (2007)

Astrophysics gets information from distant sources through light \rightarrow intensity of the radiation as a function of wavelength/energy

Intensity spectra (total flux) allow to probe:

- Distance (through line redshift)
- Temperature
- Composition
- Velocity of the gas

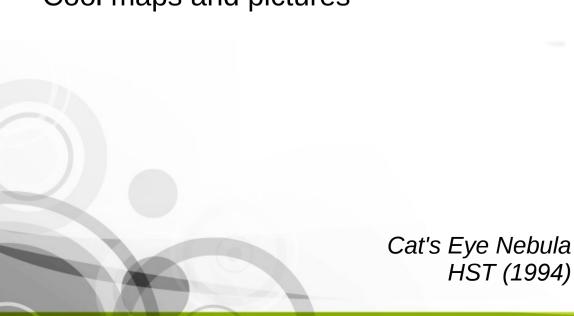


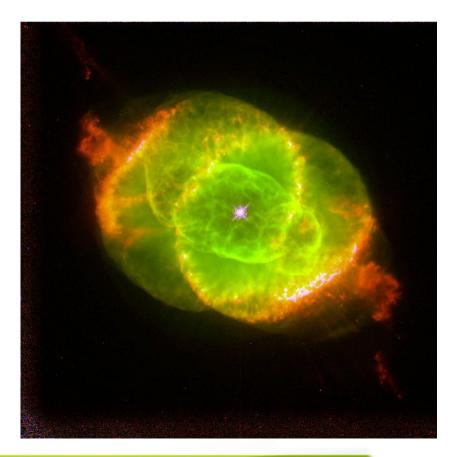
Astrophysics gets information from distant sources through light \rightarrow intensity of the radiation as a function of wavelength/energy

Intensity spectra (total flux) allow to probe:

- Distance (through line redshift)
- Temperature
- Composition
- Velocity of the gas

Cool maps and pictures





Astrophysics gets information from distant sources through light \rightarrow intensity of the radiation as a function of wavelength/energy

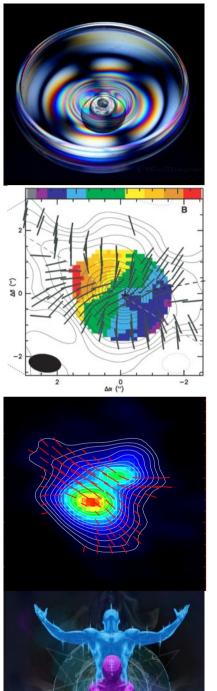
Intensity spectra (total flux) allow to probe:

- Distance (through line redshift)
- Temperature
- Composition
- Velocity of the gas

Cool maps and pictures

But deeply encoded in the electromagnetic radiation lies another essential information

POLARIZATION



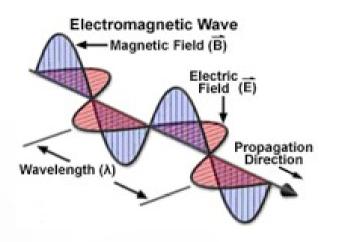
Overview

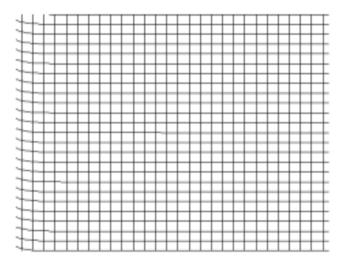
- **General introduction**
- **II Polarization : what is it and where can we observe it ?**
- III Theory
- **IV** Polarization mechanisms
- **V** Observational techniques
- **VI** Modeling polarization
- **VII** Project about radio-loud quasars and polarization

The transverse nature of light

Polarization is intrinsically connected with the transverse nature of light

The electric and magnetic field vectors oscillate (vibrate) perpendicularly (or right angled) to the direction of energy transfer





Examples: light, transverse seismic waves, Waves in a guitar string

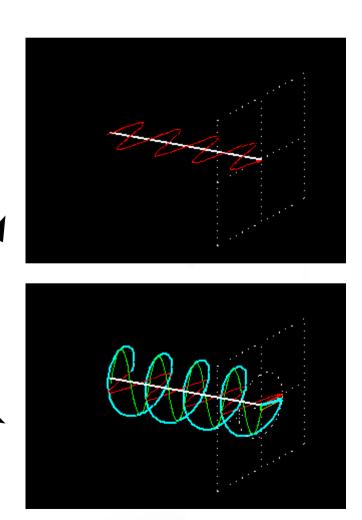
By definition, the electric (and the magnetic) vector oscillates randomly

But nature is sometimes playful

Looking at the temporal evolution of tip of the electric vector

If the trend is found to be stationary

 \rightarrow the wave is said to be polarized

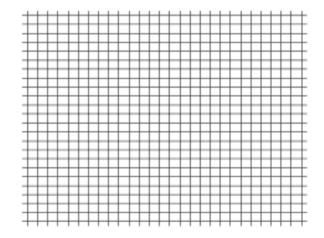


Definition

An electromagnetic wave is said to be polarized if the tip of its transverse (electric) vector is found not to vary during the measurement time

→ vectorial nature of light (Young 1801 and Fresnel 1821)

For this reason, polarization phenomena are inexistent for longitudinal waves (e.g. acoustic waves propagating in a gas/liquid)



<u>Polarimetry</u>

Polarization is thus a new information encoded in spatially asymmetric electromagnetic waves (along with intensity, frequency and phase)

But is it a useful information ?

If so, we should see it !

Well, while being very effective, the human vision is only sensitive to scalar quantities such as colors (modulation frequency / intensity) → we do not distinguish the vectorial nature

We need a polarimeter to detect/measure polarized light

Polarimetry

Polymer materials stretched in one direction (the polymer chains are aligned along one axis)

Polarized light

Polaroid aligned with polarization

Polaroid aligned midway with pol.

Pol. dir. parallel to the chains = strong absorption Pol. dir. perpendicular = weak absorption Polaroid glasses aligned for maximum brightness Polaroid glasses aligned midway between minimum and maximun

Polaroid glasses aligned for minimum brightness

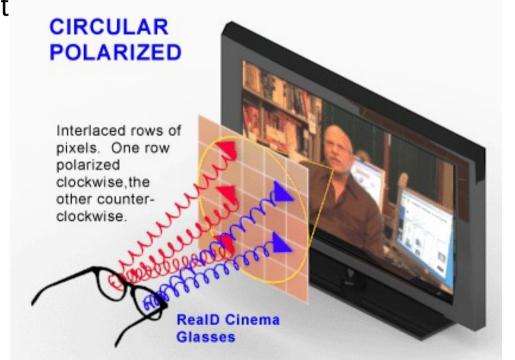
<u>A handful of examples</u>

Polarized 3D for the Cinema

The 3D movie projectors send polarized images to the screen, which reflect back to the viewer's polarized glasses

Polarized 3D glasses with two different lens polarizations, filtering the images to each eye respectively

However, because the lines are interlaced, the viewer sees half the resolution



<u>A handful of examples</u>

Camera polarizing filters

Without a polarizing filter

Polarizers are placed in front of your camera lens, and work by filtering out sunlight which has been directly reflected toward the camera at specific angles

With a polarizing filter

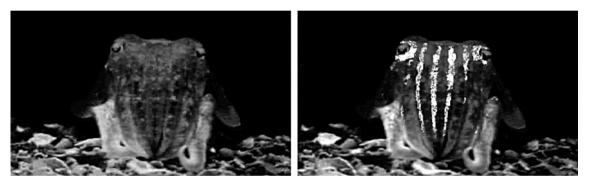
polarizers increase color saturation remove reflections reduce image contrast

longer exposure time need to be rotated expensive

<u>A handful of examples</u>

Marine animal behavioral experiments

Cephalopods, squid, octopus and cuttlefish are known to be sensitive to the orientation of polarization of incoming light (orthogonal orientation of neighboring photoreceptors)



A black and white intensity image and false color polarization image of a cuttlefish, Sepia officinalis Shashar et al. (1996a,b)

Cuttlefish can display a prominent pattern of reflected polarized light, which alters predictably with behavioral context (aggression display, preying, copulation ...)

Non related examples, but instructive or funny enough to be mentioned

Economics: an economic process where middle-class jobs disappear more than those at the bottom and the top

Politics: the process by which the public opinion divides and goes to the extremes

Psychology: the process whereby a social or political group is divided into opposing sub-groups

Mathematics: polarization of an Abelian variety, of an algebraic form or polarization identity

Music: a progressive metal band from Los Angeles who released a CD called "Chasing the Light" (2012)

In astronomy and astrophysics

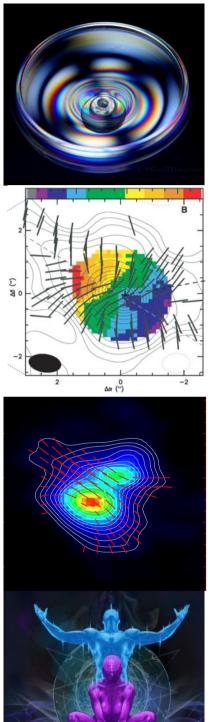
Polarization yields two more independent observables (P and ψ) than a pure intensity-spectrum

As said before, polarization is produced by **asymmetry** (either intrinsic to the source or along the observer line of sight)

Geometric asymmetries or the presence of magnetic fields are the most common sources of asymmetries in the distribution of (scattered) radiation

As most of the celestial radiation sources are either magnetized or asymmetrical, polarimetry can be used as a diagnostic tool from (proto-)stars to (extra-)solar planets, ISM*/IGM** to astrobiology

*Interstellar medium **Intergalactic medium



Overview

- **General introduction**
- **II Polarization : what is it and where can we observe it ?**
- **III** Theory
- **IV** Polarization mechanisms
- **V** Observational techniques
- **VI** Modeling polarization
- **VII** Project about radio-loud quasars and polarization

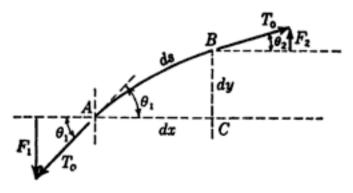
The wave equation

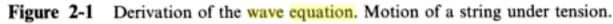
The concept of light as a wave (in particular a transverse wave) is fundamental to the phenomena of polarization and propagation

Consider a homogeneous string (length *I*) fixed at both ends and under a tension T_0 . The lateral displacements are assumed to be small compared with *I*.

 θ is a small angle ($\theta \sim \tan \theta$) between any small segment of the string and the straight line joining the point of support.

x,y plane

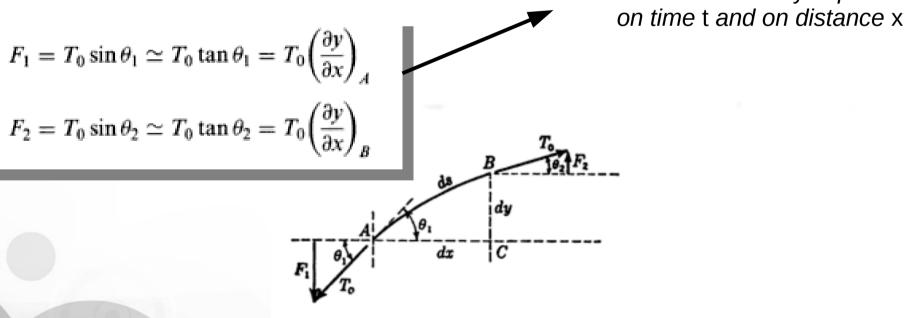


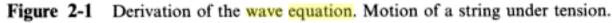


The wave equation

Differential equation of motion obtained by considering small element *ds* of the string (AB segment)

y-component of the force acting on *ds* is characterized by F_1 and F_2 Since θ_1 and θ_2 are small, then: Partial derivatives since y depends





The wave equation

Using Taylor's expansion theorem:

$$\left(\frac{\partial y}{\partial x}\right)_{A} = \frac{\partial y}{\partial x} - \left[\frac{\partial}{\partial x}\frac{\partial y}{\partial x}\right]\frac{dx}{2} = \frac{\partial y}{\partial x} - \frac{\partial^{2} y}{\partial x^{2}}\frac{dx}{2}$$
$$\left(\frac{\partial y}{\partial x}\right)_{B} = \frac{\partial y}{\partial x} + \left[\frac{\partial}{\partial x}\frac{\partial y}{\partial x}\right]\frac{dx}{2} = \frac{\partial y}{\partial x} + \frac{\partial^{2} y}{\partial x^{2}}\frac{dx}{2}$$

In which the derivatives without subscripts are evaluated at the midpoint of *ds*

The resultant force in the y-direction is:

$$F_2 - F_1 = T_0 \left(\frac{\partial^2 y}{\partial x^2}\right) dx$$

The wave equation

Now consider ρ (mass per unit length of the string). The inertial reaction of the element *ds* is: $\rho ds (\partial^2 y / \partial^2 t)$

For small displacements: $ds \sim dx$

Then:
$$\frac{\partial^2 y}{\partial t^2} = \frac{T_0}{\rho} \frac{\partial^2 y}{\partial x^2}$$
 Wave equation in 1D

In optics, y(x,t) is equated with the optical disturbance u(x,t) Plus, one can prove that:

$$v^2 = \frac{T_0}{\rho}$$

The wave equation

Let's rewrite

 \rightarrow describes the 1D propagation of an optical disturbance u(x,t) in a direction x at a time t

Generalized to 3D:

$$\frac{\partial^2 u(r,t)}{\partial x^2} + \frac{\partial^2 u(r,t)}{\partial y^2} + \frac{\partial^2 u(r,t)}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 u(r,t)}{\partial t^2}$$

with $r = (x^2 + y^2 + z^2)^{1/2}$

The wave equation

In a simpler form, it becomes the **3D** wave equation:

$$\nabla^2 u(r,t) = \frac{1}{v^2} \frac{\partial^2 u(r,t)}{\partial t^2}$$

With the Laplacian operator:

$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

The polarization ellipse

Following mechanics and equating an optical to an isotropic elastic medium, 3 independent oscillations should exist $(u_x(r,t), u_y(r,t))$ and $u_z(r,t)$ Then:

$$\nabla^2 u_i(r,t) = \frac{1}{v^2} \frac{\partial^2 u_i(r,t)}{\partial t^2} \qquad i = x, y, z$$

Where v is the velocity propagation of the oscillation and $\mathbf{r} = \mathbf{r}(x,y,z)$ Naturally:

$$u_{x}(\mathbf{r}, t) = u_{0x} \cos(\omega t - \mathbf{k} \cdot \mathbf{r} + \delta_{x})$$
Phase (arbitrary)
$$u_{y}(\mathbf{r}, t) = u_{0y} \cos(\omega t - \mathbf{k} \cdot \mathbf{r} + \delta_{y})$$

$$u_{z}(\mathbf{r}, t) = u_{0z} \cos(\omega t - \mathbf{k} \cdot \mathbf{r} + \delta_{z})$$
Angular frequency
Maximum amplitude

The polarization ellipse

In a Cartesian system, $u_x(\mathbf{r},t)$ and $u_y(\mathbf{r},t)$ are said to be transverse and $u_y(\mathbf{r},t)$ longitudinal (propagation in the z-direction)

Light is a transverse wave !

$$u_x(\mathbf{r}, t) = u_{0x} \cos(\omega t - \mathbf{k} \cdot \mathbf{r} + \delta_x)$$

$$u_y(\mathbf{r}, t) = u_{0y} \cos(\omega t - \mathbf{k} \cdot \mathbf{r} + \delta_y)$$

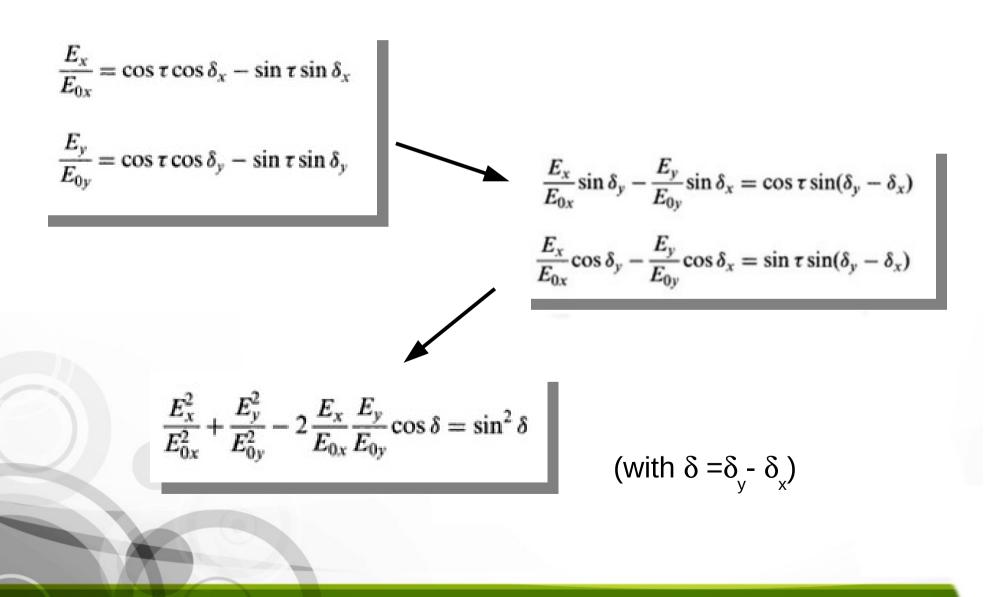
$$u_z(\mathbf{r}, t) = u_{0z} \cos(\omega t - \mathbf{k} \cdot \mathbf{r} + \delta_z)$$

Rewriting:

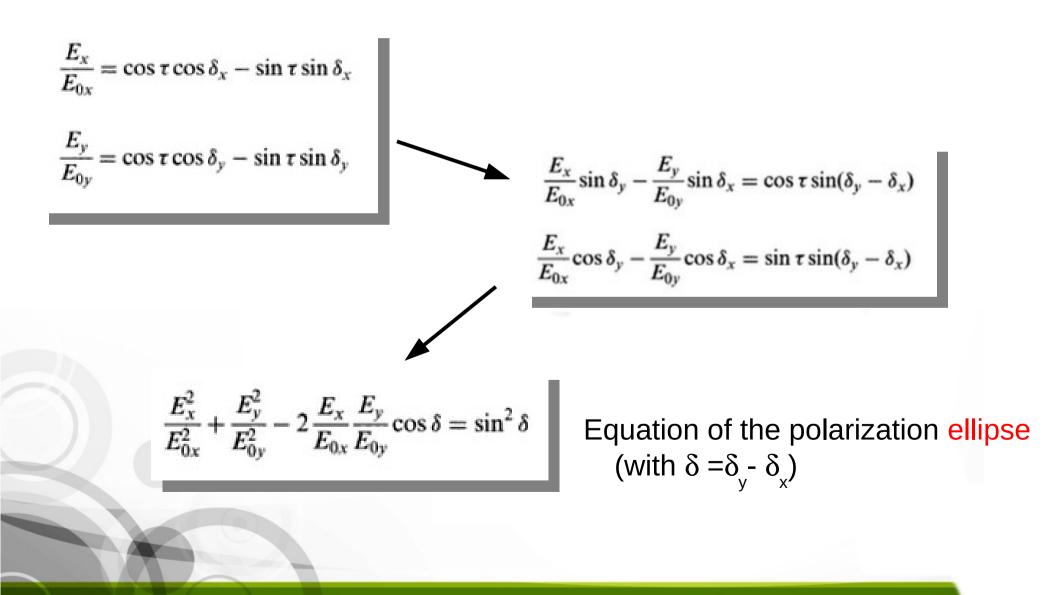
$$E_x(z, t) = E_{0x} \cos(\tau + \delta_x)$$
$$E_y(z, t) = E_{0y} \cos(\tau + \delta_y)$$

with $\tau = \omega t - kz$ (propagator)

The polarization ellipse



The polarization ellipse



The polarization ellipse $+ \frac{E_y^2}{E_{0y}^2} \sum_{E_{0x}} \frac{E_y}{E_{0y}} \cos \delta = \sin^2 \delta$ **Rotated ellipse** $(\Psi = angle of rotation)$ Figure 3-3 The rotated polarization ellipse. $E'_x = E_x \cos \psi + E_y \sin \psi$ $E'_{\nu} = -E_x \sin \psi + E_{\nu} \cos \psi$ $E'_x = a\cos(\tau + \delta')$ $\frac{E_x^{\prime 2}}{2}$ $E'_{y} = \pm b \sin(\tau + \delta')$

The polarization ellipse

We replace the previous terms inside

$$\frac{E_x}{E_{0x}} = \cos(\tau + \delta_x)$$
$$\frac{E_y}{E_{0y}} = \cos(\tau + \delta_y)$$

And after several steps, equating propagator coefficients, we find:

$$\pm ab = E_{0x}E_{0y}\sin\delta$$

$$a^{2} + b^{2} = E_{0x}^{2} + E_{0y}^{2}$$

$$(E_{0x}^{2} - E_{0y}^{2})\sin 2\psi = 2E_{0x}E_{0y}\cos\delta\cos 2\psi$$
Leading to: $\tan 2\psi = \frac{2E_{0x}E_{0y}\cos\delta}{E_{0x}^{2} - E_{0y}^{2}}$

The polarization ellipse

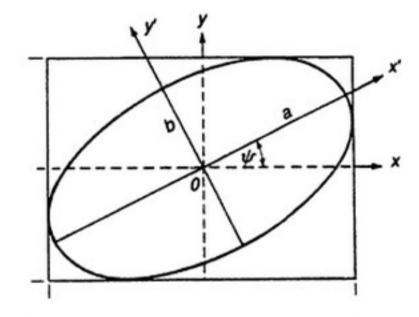


Figure 3-3 The rotated polarization ellipse.

Introducing the auxiliary angle α ($0 \le \alpha \le \pi/2$) such as: $\tan \alpha = \frac{E_{0y}}{E_{0y}}$

So we can re-write:

$$\tan 2\psi = \frac{2E_{0x}E_{0y}}{E_{0x}^2 E_{0y}^2} \cos \delta = \frac{2\tan \alpha}{1 - \tan^2 \alpha} \cos \delta$$

Leading to:

$$\tan 2\psi = (\tan 2\alpha)\cos\delta$$

(if
$$\delta = 0$$
 or $\pi \rightarrow \Psi = \pm \alpha$)
(if $\delta = \pi/2$ or $3\pi/2 \rightarrow \Psi = 0$)

The polarization ellipse

 $\tan \chi = \frac{\pm \theta}{a} \qquad -\frac{\pi}{4} \le \chi \le \frac{\pi}{4}$ Finally introducing the ellipticity angle such as: $\frac{\pm 2ab}{a^2 + b^2} = \frac{2E_{0x}E_{0y}}{E_{0x}^2 + E_{0y}^2} \sin \delta = (\sin 2\alpha) \sin \delta$ Leads to: $\sin 2\chi = (\sin 2\alpha) \sin \delta$ And: If $b = 0 \rightarrow \chi$ is null \rightarrow linear polarization If $b = a \rightarrow \chi$ is maximum \rightarrow circular polarization Figure 3-3 The rotated polarization ellipse.

The polarization ellipse

Summarizing the important equations:

Polarization angle Polarization ellipticity Polarization ellipticity 4 $\sin 2\chi = (\sin 2\alpha) \sin \delta$ $-\frac{\pi}{4} < \chi \le \frac{\pi}{4}$ where $0 \le \alpha \le \pi/2$ and Amplitude of polarization 4 $a^2 + b^2 = E_{0x}^2 + E_{0y}^2$ Auxiliary polarization angle 4 $\tan \alpha = \frac{E_{0y}}{E_{0x}}$ $\tan \chi = \frac{\pm b}{a}$

<u>Stokes formalism</u>

Consider a pair of monochromatic plane waves, orthogonal to each other at a point in space (z = 0). They are represented by the (now known) equation:

$$\frac{E_x^2(t)}{E_{0x}^2} + \frac{E_y^2(t)}{E_{0y}^2} - \frac{2E_x(t)E_y(t)}{E_{0x}E_{0y}}\cos\delta = \sin^2\delta$$

However, the amplitudes $E_x(t)$ and $E_y(t)$ are time-dependent. To measure them, we need to <average> them over the observational time:

$$\frac{\langle E_x^2(t)\rangle}{E_{0x}^2} + \frac{\langle E_y^2(t)\rangle}{E_{0y}^2} - \frac{2\langle E_x(t)E_y(t)\rangle}{E_{0x}E_{0y}}\cos\delta = \sin^2\delta$$

Stokes formalism

We use:
$$\langle E_i(t)E_j(t)\rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T E_i(t)E_j(t) dt$$
 $i, j = x, y$

And a different form of the previous equation (multiplied by $4E^2_{0x}E^2_{0y}$)

$$4E_{0y}^{2}\langle E_{x}^{2}(t)\rangle + 4E_{0x}^{2}\langle E_{y}^{2}(t)\rangle - 8E_{0x}E_{0y}\langle E_{x}(t)E_{y}(t)\rangle\cos\delta$$

= $(2E_{0x}E_{0y}\sin\delta)^{2}$

We find:

$$\langle E_x^2(t) \rangle = \frac{1}{2} E_{0x}^2$$
$$\langle E_y^2(t) \rangle = \frac{1}{2} E_{0y}^2$$
$$\langle E_x(t) E_y(t) \rangle = \frac{1}{2} E_{0x} E_{0y} \cos \delta$$

Stokes formalism

Substituting:
$$2E_{0x}^2E_{0y}^2 + 2E_{0x}^2E_{0y}^2 - (2E_{0x}E_{0y}\cos\delta)^2 = (2E_{0x}E_{0y}\sin\delta)^2$$

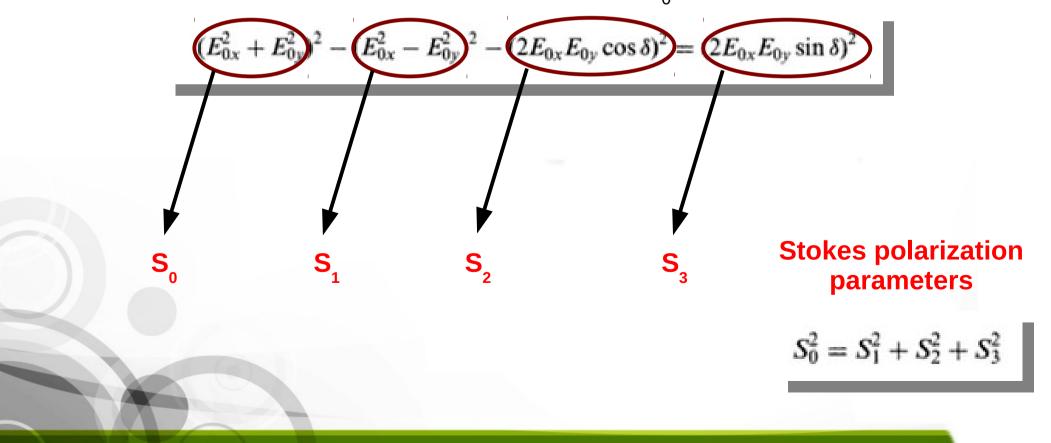
And expressing the result in terms of intensity E_0 :

$$(E_{0x}^2 + E_{0y}^2)^2 - (E_{0x}^2 - E_{0y}^2)^2 - (2E_{0x}E_{0y}\cos\delta)^2 = (2E_{0x}E_{0y}\sin\delta)^2$$

Stokes formalism

Substituting: $2E_{0x}^2E_{0y}^2 + 2E_{0x}^2E_{0y}^2 - (2E_{0x}E_{0y}\cos\delta)^2 = (2E_{0x}E_{0y}\sin\delta)^2$

And expressing the result in terms of intensity E₀:



Stokes formalism

- S_0, S_1, S_2 and S_3 are related to intensities \rightarrow measurable quantities
- $S_0 =$ total intensity of the photon flux
- S_1 = difference between the vertical and horizontal
- polarization state
- S_{2} = difference between the linear polarization oriented
- at +45° and -45° from the vertical polarization state
- $S_3 = difference between the clockwise and$

anti-clockwise rotational directions

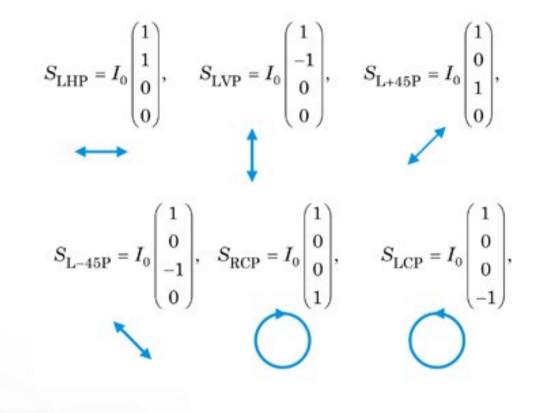
George Gabriel Stokes (1819 – 1903)

 $S = \begin{pmatrix} S_0 \\ S_1 \\ S_2 \\ S_2 \\ S_n \end{pmatrix} = \begin{pmatrix} E_{0x}^* + E_{0y}^* \\ E_{0x}^2 - E_{0y}^2 \\ 2E_{0x}E_{0y}\cos\delta \\ 2E_{0x}E_{0x}\sin\delta \end{pmatrix}.$

Stokes vector

<u>Stokes formalism</u>

The Stokes vectors for the degenerate polarization states are readily found using the previous definitions and equations:



Stokes formalism

The Stokes parameters can be shown to be related to the ellipse's orientation and ellipticity angles ψ and χ , respectively:

$$\begin{split} \psi &= \frac{1}{2} \tan^{-1} \left(\frac{S_2}{S_1} \right), \qquad 0 \leq \psi \leq \pi, \\ \chi &= \frac{1}{2} \sin^{-1} \left(\frac{S_3}{S_0} \right), \qquad -\frac{\pi}{4} \leq \chi \leq \frac{\pi}{4}. \end{split}$$

And, finally, the polarization degree of a monochromatic wave can be evaluated with:

$$P = \frac{I_{\text{pol}}}{I_{\text{tot}}} = \frac{(S_1^2 + S_2^2 + S_3^2)^{1/2}}{S_0} \qquad 0 \le P \le 1$$

Stokes formalism

The Stokes parameters can be shown to be related to the ellipse's orientation and ellipticity angles ψ and χ , respectively:

$$\begin{split} \psi &= \frac{1}{2} \tan^{-1} \left(\frac{S_2}{S_1} \right), \qquad 0 \leq \psi \leq \pi, \\ \chi &= \frac{1}{2} \sin^{-1} \left(\frac{S_3}{S_0} \right), \qquad -\frac{\pi}{4} \leq \chi \leq \frac{\pi}{4}. \end{split}$$

And, finally, the polarization degree of a <u>quasi-monochromatic wave</u> (a pack of photons) can be evaluated with:

$$S_0^2 \ge S_1^2 + S_2^2 + S_3^2$$

Stokes formalism

It follows that any wave characterized by a Stokes vector can be decomposed into a completely depolarized and a completely polarized counterpart:

$$\begin{bmatrix} S_0\\S_1\\S_2\\S_3 \end{bmatrix} = \begin{bmatrix} S_0 - \sqrt{S_1^2 + S_2^2 + S_3^2}\\0\\0\\0\end{bmatrix} + \begin{bmatrix} \sqrt{S_1^2 + S_2^2 + S_3^2}\\S_1\\S_2\\S_3 \end{bmatrix}$$

Mueller matrices

The Stokes parameters are used to fully characterize the state of polarization of a light wave. Mueller (1948), meanwhile, showed that there was a linear relationship between the in-coming (S_{in}) and out-going (S_{out}) Stokes vector during a scattering event:

$$\begin{pmatrix} S_{0} \\ S_{1} \\ S_{2} \\ S_{3} \end{pmatrix}^{out} = \begin{pmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \\ M_{41} & M_{42} & M_{43} & M_{44} \end{pmatrix} \begin{pmatrix} S_{0} \\ S_{1} \\ S_{2} \\ S_{3} \end{pmatrix}^{in}$$

Mueller matrix

Mueller matrices

The Mueller matrix [M], whose elements m_{ij} (i, j = 0, 1, 2, 3) are real, is directly connected to the measurement. It may be regarded as the polarization transfer matrix of a given environment. Knowing [M], the polarization state of the system output can be predicted when the incident conditions are known

The matrix properties determine the Mueller matrix of an optical system formed by a succession of elements. It is the product of the matrices of the elements constituting the system.

Considering n optical elements traversed by a light ray in the order 1, 2; ... n, then the resulting Mueller matrix is:

$$[M] = [M_n][M_{n-1}][M_{n-2}]...[M_2][M_1]$$

Mueller matrices: a simple example

In order to determine the correct Stokes vector for a photon scattered off an electron (Thomson scattering approximation), we rotate the incident vector into the frame of reference of the moving photon using a Mueller matrix, $L(\psi)$, apply the scattering matrix $R(\Theta)$, where Θ is the angle between the incident and scattered radiation ($\alpha = \cos \Theta$), and then rotate the vector back into the original frame of reference:

