Koevoluce galaxií a centrálních černých děr

Bruno Jungwiert

Astronomický ústav AV ČR Oddělení Galaxie a planetární soustavy

Centre de Recherche Astronomique de Lyon (CRAL)

Praha, listopad 2005

Jak vznikají aktivní galaktická jádra (AGN) ?

 $L_{AGN} = 10^{39} - 10^{48} \text{ erg/s}$ Rezentace/Images/qu $= 10^{6} - 10^{15} \text{ Lo}$

Quasars (QSO): $L > 10^{45}$ erg/s

Low-luminosity AGN (LLAGN): Seyfert gal.: $L = 10^{40} - 10^{45}$ erg/s LINERS: $L = 10^{39} - 10^{44}$ erg/s

Ultra-low luminosity AGN

Quasar host galaxies

Type 1 vs. Type 2 AGN

Seyfert 1 vs. Seyfert 2 galaxies Type 1 vs. Type 2 quasars

 F_{λ} (10⁻¹⁴ ergs s⁻¹ cm⁻² Å⁻¹)

Type 1:

Broad emission lines (permitted) + Narrow emission lines (forbidden)

Type 2:

Narrow emission lines (permitted + forbidden)

Weak broad lines sometimes seen in the polarized light: Antonucci & Miller (1985) --> Unification

Sjednocený model pro AGN (Unified AGN model)

Černá díra Akreční disk Broad-line region (BLR) Torus Narrow-line region (NLR) Jet AGN luminosity and accretion rate $L = \eta dM/dt c^2 = \eta dM/dt 5.7 10^{46} erg/s$

> Eddington luminosity $L_{E} = 1.3 \ 10^{38} \text{ M/Mo erg/s}$

from Ho (2004)

Fig. 1. Distribution of (a) nuclear bolometric luminosities and (b) Eddington ratios $\lambda \equiv L_{\rm bol}/L_{\rm Edd}$. S = Seyferts, L = LINERs, T = transition objects, and A = absorption-line nuclei. Open histograms denote upper limits. From Ho (2003.)

Black hole – bulge correlations 1) $M_{BH} - \sigma_{\star}$ relation (log-linear): $\log(M_{\rm BH}/Mo) = \alpha + \beta \log(\sigma / \sigma_0)$ $=> M_{_{\rm BH}} \propto \sigma_*^{\ \beta}$ Ferrarese & Meritt (2000): $\beta = 5.27 \pm 0.4$ Gebhardt et al. (2000): $\beta = 3.75 \pm 0.3$ Tremaine et al. (2002): $\beta = 4.02 \pm 0.3$ 2) $M_{BH} - M_{bulge}$ relation $M_{BH} = (0.001 - 0.002) M_{bulge}$

Bulge ve spirálních galaxiích

Spiral Galaxy NGC 4565 (FORS / VLT)

ESO PR Photo 07a.00 (22 February 2000)

D European Southern Observatory

Eliptické galaxie

M 87

NGC 4261

$M_{BH} - \sigma_{*}$ relation from Tremaine et al. (2002) $M_{BH}/Mo = 1.35 \ 10^{8} \ (\sigma_{*}/200 \ \text{km/s})^{4.02} = 8.31 \ 10^{6} \ (\sigma_{*}/100 \ \text{km/s})^{4.02}$

Detected intermediate-mass black holes (10³ -10⁵ Mo)

NGC 4395 (Sd, Seyfert 1, D ~ 4 Mpc): σ_{\star} < 30 km/s, M_{BH} ~ 10⁴ – 10⁵ Mo

POX 52 (dE, Seyfert 1, D ~ 90 Mpc): $\sigma_{\star} < 36 \pm 5$ km/s, M_{BH} ~ 1.6 10⁵ Mo

from Ho et al. 2004

Central black-holes in low-mass galaxies:

- occupation number of central BHs unknown, could be well below 1
- in most cases only upper limits on $M_{_{\rm BH}}$ are known
- stellar and gas dynamical BH detections from HST: not enough spatial resolution to detect $M_{_{RH}} < 10^6$ Mo for D > Local Group

M 33 (Sc) M_{BH} < 3 000 Mo

<mark>IC 342</mark> М_{вн} < 5 10⁵ Мо

dEs in Virgo $M_{_{BH}} < 10^6 - 10^7 Mo$

Sphere of influence of a black hole R_{BH} (pc) = GM_{BH} / σ_{*}^{2} = 0.43 (M_{BH} /10⁶ Mo) / (σ_{*} /100 km/s)² M_{RH}(Mo) R_{BH} (pc) σ (km/s) R_{s} (pc) 10^{6} 60 10^{-7} 1 10^{7} **10**⁻⁶ 105 4 10^{8} 10⁻⁵ 185 13 10^{9} 330 40 10^{-4}

Black hole masses from reverberation mapping

from Peterson (2004)

Stars in the Milky Way center

The Centre of the Milky Way (VLT YEPUN + NACO)

20 light-days

The Centre of the Milky Way (detail) (VLT YEPUN + NACO)

ESO PR Photo 23b/02 (9 October 2002)

©European Southern Observatory

ESO PR Photo 23a/02 (9 October 2002)

The Motion of a Star around the Central Black Hole in the Milky Way

ESO PR Photo 23c/02 (9 October 2002)

@European Southern Observatory

Near infrared flares in the Milky Way Center

Near-IR Flare from Galactic Centre (VLT YEPUN + NACO)

ESO PR Photo 29a/03 (29 October 2003)

C European Southern Observatory

Black hole growth - Fuelling of "monsters" (AGN)

- fuel: gas / stars / black holes

- fuelling by gas from kpc-scales =>

Angular momentum problem

=> bars / interactions / mergers

Feeding the monster ...

(from S. Phinney 1997)

Fig. 1—The problem of feeding the monster: a large (angular momentum) spoon and a small (angular momentum) mouth. Hands and teeth (gravitational and magnetic forces, viscosity, ...) are needed to guide and divide the food into morsels that can be metabolised during activity.

Příčky ve spirálních galaxiích

Spiral Galaxy Messier 83 (FORS / VLT)

ESO PR Photo 24b/05 (August 10, 2005)

Spiral Galaxy NGC 7424 (VLT MELIPAL + VIMOS)

C European Southern Observatory

ESO PR Photo 33c/04 (1December 2004)

Spiral Galaxy NGC 1097 (VLT MELIPAL + VIMOS)

.....

Milky Way in the near-IR (COBE/DIRBE)

N-body simulations of spiral galaxies

1) bar instability in a stellar disk (no gas present)

me/bruno/video-t00.m

a) without bulge Q = 0 Q = 1

b) with bulge Q = 0 Q = 1Q = 2.5 Q: Toomre stability parameter

 $Q_{stars} = \kappa \sigma / (3.36 \text{ G}\Sigma)$

 $Q_{gas} = \kappa c / (\pi G \Sigma)$

N-body simulations of spiral galaxies

2) stellar/gaseous disk (Mg/Ms = 0.1 & 0.3)

me/bruno/video-t02.m

- bar formation
- gas inflow
- nuclear disk / outer ring
- bar destruction for Mg/Ms = 0.3
- long-living spiral arms in the gas

Gas inflow in a barred potential: M_{gas}/M_{tot} in the central kiloparsec

Orbits in barred and unbarred galaxies

Stars

Gas

 Gas

10

(from Combes 2003)

Gravity torque in non-axisymmetric potentials

Lindblad resonances and corotation Late-type galaxy Early-type galaxy

(from Combes 2003)

Gravitational torque in spiral / lenticular galaxies

(from Buta et al.)

Prstence ve spirálních galaxiích

NGC 7020 (Buta, Combes 1996)

The Colossal Cosmic Eye NGC 1350 (FORS/VLT)

ESO PR Photo 31a/05 (September 27, 2005)

ESO PR (huso 20c/93 (30 April 1999)

(VLT ANTU + FORS1)

C European Southern Observatory

Families and varieties in the de Vaucouleurs Revised Hubble Classification system

(from Buta)

(from Buta)

Bar tranfers gas inwards to 100 pc scales
but the monster is still not fed ...
--> a) nuclear bars / nuclear spirals
b) viscous torques
c) dynamical friction

Fig. 1—The problem of feeding the monster: a large (angular momentum) spoon and a small (angular momentum) mouth. Hands and teeth (gravitational and magnetic forces, viscosity, ...) are needed to guide and divide the food into momels that can be metabolised during activity.

Double bar in NGC 1433

B band

H band

in un in

NGC 1433

(Buta & Combes 1996)

(Jungwiert, Combes & Axon1997)

Jungwiert, Combes & Axon 1997

Double bars in H-band

AAT 55

Jungwiert, Combes & Axon 1997

Nuclear spiral in NGC 1365 (H-band)

ESO PR Photo 33a/05 (October 17, 2005)

ESO PR Photo 35d/04 (22 December 2004)

© European Southern Observatory

Network of Filamentary Structures in NGC 1097 (NACO/VLT)

© ESO +

ESO PR Photo 33b/05 (October 17, 2005)

Interacting galaxies

Galaxies NGC 2207 and IC 2163

NASA and The Hubble Heritage Team (STScl) • Hubble Space Telescope WFPC2 • STScl-PRC99-41

Simulations of galaxy interactions / merging

1) J. Barnes, J. Hibbard

barnes-hibbard.mpg

2) F. Summers, C. Mihos, L. Hernquist

mmers-mihos-hernquist.m

3) J. Barnes Multiple-Galaxy Collision

parnes-multiplecollision.mpc

Cartwheel Galaxy

HST • WFPC2

Hoag's object

Polar ring galaxy NGC4650 A

Hubble Heritage

Hoag's Object

Hubble Heritage

NASA and The Hubble Heritage Team (STScI/AURA) • Hubble Space Telescope WFPC2 • STScI-PRC02-21

Polar-Ring Galaxy NGC 4650A PRC99-12 Space Telescope Science Institute Hubble Heritage Team (AURA/STScI/NASA)

(Credit: STScI/AURA, NASA)

Ultraluminous Infrared Galaxies (ULIRGs)

L_{IR} > 10¹² Lo
multiple mergers
starbursts
multiple nuclei
quasar progenitors

HST/ACS (NASA/ESA)

Binary supermassive black-holes

1) galaxy interaction --> merging

 central black holes sink towards the merger center due to dynamical friction

3) BH binary hardening due to triple interactions with surrounding stars -> "gravitational slingshot"

4) gravitational waves

5) merging and radiation recoil --> wandering supermassive black holes ?

Stellar density profiles in galaxies with SMBHs

(from Merritt 2005)

Stellar cusp destruction

Radiation recoil in binary black hole mergers

(from Hughes et al. 2004)

Black hole – Galaxy feedback

Energy input from AGN can quench:

1) further black hole growth

2) star formation in the galaxy

Di Matteo, Springel, Hernquist 2005

Cosmic downsizing

(from Hasinger 2005)

Anti-hierarchical black-hole growth

from Marconi et al. 2005

Some key questions:

1) What triggers AGN ? How long do they last ?

2) Physics of BH accretion (sub-Eddington vs. Eddington)

3) M-sigma relation at high redshift

5) AGN/SF feedback: how they regulate BH growth and SFR ?

6) complete census of AGN (obscured AGN)